17 resultados para Nucleic acid delivery
Resumo:
PURPOSE: To evaluate the implant of human adipose derived stem cells (ADSC) delivered in hyaluronic acid gel (HA), injected in the subcutaneous of athymic mice. METHODS: Control implants -HA plus culture media was injected in the subcutaneous of the left sub scapular area of 12 athymic mice. ADSC implants: HA plus ADSC suspended in culture media was injected in the subcutaneous, at the contra lateral area, of the same animals. With eight weeks, animals were sacrificed and the recovered implants were processed for extraction of genomic DNA, and histological study by hematoxilin-eosin staining and immunufluorescence using anti human vimentin and anti von Willebrand factor antibodies. RESULTS: Controls: Not visualized at the injection site. An amorphous substance was observed in hematoxilin-eosin stained sections. Human vimentin and anti von Willebrand factor were not detected. No human DNA was detected. ADSC implants - A plug was visible at the site of injection. Fusiform cells were observed in sections stained by hematoxilin- eosin and both human vimentin and anti von Willebrand factor were detected by immunofluorescence. The presence of human DNA was confirmed. CONCLUSION: The delivery of human adipose derived stem cells in preparations of hyaluronic acid assured cells engraftment at the site of injection.
Resumo:
Brain fatty acid-binding protein (B-FABP) interacts with biological membranes and delivers polyunsaturated fatty acids (FAs) via a collisional mechanism. The binding of FAs in the protein and the interaction with membranes involve a motif called "portal region", formed by two small α-helices, A1 and A2, connected by a loop. We used a combination of site-directed mutagenesis and electron spin resonance to probe the changes in the protein and in the membrane model induced by their interaction. Spin labeled B-FABP mutants and lipidic spin probes incorporated into a membrane model confirmed that BFABP interacts with micelles through the portal region and led to structural changes in the protein as well in the micelles. These changes were greater in the presence of LPG when compared to the LPC models. ESR spectra of B-FABP labeled mutants showed the presence of two groups of residues that responded to the presence of micelles in opposite ways. In the presence of lysophospholipids, group I of residues, whose side chains point outwards from the contact region between the helices, had their mobility decreased in an environment of lower polarity when compared to the same residues in solution. The second group, composed by residues with side chains situated at the interface between the α-helices, experienced an increase in mobility in the presence of the model membranes. These modifications in the ESR spectra of B-FABP mutants are compatible with a less ordered structure of the portal region inner residues (group II) that is likely to facilitate the delivery of FAs to target membranes. On the other hand, residues in group I and micelle components have their mobilities decreased probably as a result of the formation of a collisional complex. Our results bring new insights for the understanding of the gating and delivery mechanisms of FABPs.