27 resultados para Nitro-l-arginine


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We described recently that systemic hypoxia provokes vasoconstriction in heart failure (HF) patients. We hypothesized that either the exaggerated muscle sympathetic nerve activity and/or endothelial dysfunction mediate the blunted vasodilatation during hypoxia in HF patients. Twenty-seven HF patients and 23 age-matched controls were studied. Muscle sympathetic nerve activity was assessed by microneurography and forearm blood flow (FBF) by venous occlusion plethysmography. Peripheral chemoreflex control was evaluated through the inhaling of a hypoxic gas mixture (10% O-2 and 90% N-2). Basal muscle sympathetic nerve activity was greater and basal FBF was lower in HF patients versus controls. During hypoxia, muscle sympathetic nerve activity responses were greater in HF patients, and forearm vasodilatation in HF was blunted versus controls. Phentolamine increased FBF responses in both groups, but the increase was lower in HF patients. Phentolamine and N-G-monomethyl-L-arginine infusion did not change FBF responses in HF but markedly blunted the vasodilatation in controls. FBF responses to hypoxia in the presence of vitamin C were unchanged and remained lower in HF patients versus controls. In conclusion, muscle vasoconstriction in response to hypoxia in HF patients is attributed to exaggerated reflex sympathetic nerve activation and blunted endothelial function (NO activity). We were unable to identify a role for oxidative stress in these studies. (Hypertension. 2012; 60: 669-676.) . Online Data Supplement

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyamine biosynthesis enzymes are promising drug targets for the treatment of leishmaniasis, Chagas' disease and African sleeping sickness. Arginase, which is a metallohydrolase, is the first enzyme involved in polyamine biosynthesis and converts arginine into ornithine and urea. Ornithine is used in the polyamine pathway that is essential for cell proliferation and ROS detoxification by trypanothione. The flavonols quercetin and quercitrin have been described as antitrypanosomal and antileishmanial compounds, and their ability to inhibit arginase was tested in this work. We characterized the inhibition of recombinant arginase from Leishmania (Leishmania) amazonensis by quercetin, quercitrin and isoquercitrin. The IC50 values for quercetin, quercitrin and isoquercitrin were estimated to be 3.8, 10 and 4.3 mu M, respectively. Quercetin is a mixed inhibitor, whereas quercitrin and isoquercitrin are uncompetitive inhibitors of L. (L.) amazonensis arginase. Quercetin interacts with the substrate L-arginine and the cofactor Mn2+ at pH 9.6, whereas quercitrin and isoquercitrin do not interact with the enzyme's cofactor or substrate. Docking analysis of these flavonols suggests that the cathecol group of the three compounds interact with Asp129, which is involved in metal bridge formation for the cofactors Mn-A(2+) and Mn-B(2+) in the active site of arginase. These results help to elucidate the mechanism of action of leishmanicidal flavonols and offer new perspectives for drug design against Leishmania infection based on interactions between arginase and flavones. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study investigated the early presence of inflammatory response in renal tissue of young offspring from diabetic mothers. The effect of L-arginine (L-arg) supplementation was also investigated. The offspring was divided into four groups: group CO (controls); group DO (diabetic offspring); group CA (CO receiving 2% L-arg solution) and group DA (DO receiving the 2% L-arg solution). Glycemia, arterial pressure and renal function were evaluated; gene and protein expression of pro-inflammatory cytokines were also measured. Blood pressure levels were significantly increased in 2 and 6 month-old DO rats, whereas L-arg administration caused a significant decrease in the DA group, at both ages. DO rats showed a significantly blunted glycemic response to exogenous insulin. In 2 month-old DO animals, renal protein expression of pro-inflammatory molecules was significantly increased. At six months of age, we also observed an increase in gene expression of pro-inflammatory molecules, whereas L-arg supplementation prevented this increase at both ages. Our data suggest that activation of inflammatory pathways is present early in the kidney of DO rats, and that L-arg can attenuate the expression of these markers of tissue inflammation. Our results also reinforce the concept that intrauterine environmental factors are a fundamental determinant in the development of metabolic and vascular diseases later in life. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypertension is a disorder affecting millions worldwide, and is a leading cause of death and debilitation in the United States. It is widely accepted that during hypertension and other cardiovascular diseases the vasculature exhibits endothelial dysfunction; a deficit in the relaxatory ability of the vessel, attributed to a lack of nitric oxide (NO) bioavailability. Recently, the one electron redox variant of NO, nitroxyl anion (NO-) has emerged as an endothelium-derived relaxing factor (EDRF) and a candidate for endothelium-derived hyperpolarizing factor (EDRF). NO- is thought to exist protonated (HNO) in vivo, which would make this species more resistant to scavenging. However, no studies have investigated the role of this redox species during hypertension, and whether the vasculature loses the ability to relax to HNO. Thus, we hypothesize that aorta from angiotensin II (AngII)-hypertensive mice will exhibit a preserved relaxation response to Angeli's Salt, an HNO donor. Male C57B16 mice, aged 12-14 weeks were implanted with mini-osmotic pumps containing AngII (90 ng/min, 14 days plus high salt chow) or sham surgery. Aorta were excised, cleaned and used to perform functional studies in a myograph. We found that aorta from AngII-hypertensive mice exhibited a significant endothelial dysfunction as demonstrated by a decrease in acetylcholine (ACh)-mediated relaxation. However, vessels from hypertensive mice exhibited a preserved response to Angeli's Salt (AS), the HNO donor. To confirm that relaxation responses to HNO were maintained, concentration response curves (CRCs) to ACh were performed in the presence of scavengers to both NO and HNO (carboxy-PTIO and L-cys, resp.). We found that ACh-mediated relaxation responses were significantly decreased in aorta from sham and almost completely abolished in aorta from AngII-treated mice. Vessels incubated with L-cys exhibited a modest decrease in ACh-mediated relaxations responses. These data demonstrate that aorta from AngII-treated hypertensive mice exhibit a preserved relaxation response to AS, an HNO donor, regardless of a significant endothelial dysfunction. (C) 2011 Elsevier Ltd. All rights reserved,

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Antidepressants are reported to display anti-inflammatory effects. Nitric oxide (NO), in turn, has a key role in inflammation. The objective of the present study was to evaluate the effect of amitriptyline co-administered with L-NAME (a NO synthase inhibitor) on certain parameters of acute inflammatory response in rats, as a form to investigate a possible participation of NO in the anti-inflammatory effects of amitriptyline. For this, two animal models were used: carrageenan-induced paw edema and acute peritonitis. In the last one, peritoneal exudate, adhesion molecules expression by peripheral blood leukocytes and serum cytokines levels were evaluated. In a noninflammatory condition, serum levels of nitrates were determined. L-NAME induced a potentiation of the anti-inflammatory effects of amitriptyline (p < 0.05) in the paw edema model; however, these effects were not abrogated when L-NAME was substituted by L-arginine administration. A decrease in both leukocyte concentration and total number of cells in the peritoneal exudate and a reduction in the total serum levels of nitrates were observed with co-administration of L-NAME and amitriptyline (p < 0.05). No significant differences among groups were found concerning the expression of adhesion molecules by peripheral blood leukocytes (p > 0.05). There was a significant decrease on IL-1 beta and TNF-alpha serum levels in the experimental groups when compared to the control animals. Together the present results and the literature suggest that the anti-inflammatory effects of amitriptyline may be due to a decrease in NO production. A decrease in IL-1 beta/TNF-alpha serum levels may also be implicated in the results observed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The new pathway nitrate-nitrite-nitric oxide (NO) has emerged as a physiological alternative to the classical enzymatic pathway for NO formation from L-arginine. Nitrate is converted to nitrite by commensal bacteria in the oral cavity and the nitrite formed is then swallowed and reduced to NO under the acidic conditions of the stomach. In this study, we tested the hypothesis that increases in gastric pH caused by omeprazole could decrease the hypotensive effect of oral sodium nitrite. We assessed the effects of omeprazole treatment on the acute hypotensive effects produced by sodium nitrite in normotensive and L-NAME-hypertensive free-moving rats. In addition, we assessed the changes in gastric pH and plasma levels of nitrite, NOx (nitrate+ nitrite), and S-nitrosothiols caused by treatments. We found that the increases in gastric pH induced by omeprazole significantly reduced the hypotensive effects of sodium nitrite in both normotensive and L-NAME-hypertensive rats. This effect of omeprazole was associated with no significant differences in plasma nitrite, NOx, or S-nitrosothiol levels. Our results suggest that part of the hypotensive effects of oral sodium nitrite may be due to its conversion to NO in the acidified environment of the stomach. The increase in gastric pH induced by treatment with omeprazole blunts part of the beneficial cardiovascular effects of dietary nitrate and nitrite. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background Several studies had demonstrated the involvement of the dorsolateral portion of periaqueductal grey matter (dlPAG) in defensive responses. This region contains a significant number of neurons containing the enzyme nitric oxide synthase (NOS) and previous studies showed that non-selective NOS inhibition or glutamate NMDA-receptor antagonism in the dlPAG caused anxiolytic-like effects in the elevated plus maze. Methods In the present study we verified if the NMDA/NO pathway in the dlPAG would also involve in the behavioral suppression observed in rats submitted to the Vogel conflict test. In addition, the involvement of this pathway was investigated by using a selective nNOS inhibitor, Nω-propyl-L-arginine (N-Propyl, 0.08 nmol/200 nL), a NO scavenger, carboxy-PTIO (c-PTIO, 2 nmol/200 nL) and a specific NMDA receptor antagonist, LY235959 (4 nmol/200 nL). Results Intra-dlPAG microinjection of these drugs increased the number of punished licks without changing the number of unpunished licks or nociceptive threshold, as measure by the tail flick test. Conclusion The results indicate that activation of NMDA receptors and increased production of NO in the dlPAG are involved in the anxiety behavior displayed by rats in the VCT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Abstract Background In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral μ-opioid receptor (MOR) activation are able to direct block PGE2-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE2-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated. Results Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE2-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3Kγ/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3Kγ null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3Kγ (≅ 43%). Conclusions The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3Kγ/AKT signaling. This study extends a previously study of our group suggesting that PI3Kγ/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report changes in plasma arginine vasopressin (AVP) and oxytocin (OT) concentrations evoked by the microinjection of L-glutamate (L-glu) into the hypothalamic supraoptic nucleus (SON) and paraventricular nucleus(PVN) of unanesthetized rats, as well as which local mechanisms are involved in their mediation. L-Glu microinjection (10 nmol/100 nl) into the SON increased the circulating levels of both AVP and OT. The AVP increases were blocked by local pretreatment with the selective non-N-methyl-D-aspartate (NMDA) receptor antagonist 2,3-dioxo-6-nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) (2 nmol/100 nl), but it was not affected by pretreatment with the NMDA-receptor antagonist LY235959 (2 nmol/100 nl). The OT response to L-glu microinjection into the SON was blocked by local pretreatment with either NBQX or LY235959. Furthermore, the administration of either the non-NMDA receptor agonist (+/-)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid hydrobromide (AMPA) (5 nmol/100 nl) or NMDA receptor agonist NMDA (5 nmol/100 nl) into the SON had no effect on OT baseline plasma levels, but when both agonists were microinjected together these levels were increased. L-Glu microinjection into the PVN did not change circulating levels of either AVP or OT. However, after local pretreatment with LY235959, the L-glu microinjection increased plasma levels of the hormones. The L-glu microinjection into the PVN after the local treatment with NBQX did not affect the circulating AVP and OT levels. Therefore, results suggest the AVP release from the SON is mediated by activation of non-NMDA glutamate receptors, whereas the OT release from this nucleus is mediated by an interaction of NMDA and non-NMDA receptors. The present study also suggests an inhibitory role for NMDA receptors in the PVN on the release of AVP and OT. (Endocrinology 153: 2323-2331, 2012)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Increased plasma concentrations of free fatty acids (FFA) can lead to insulin resistance in skeletal muscle, impaired effects on mitochondrial function, including uncoupling of oxidative phosphorylation and decrease of endogenous antioxidant defenses. Nitric oxide (NO) is a highly diffusible gas that presents a half-life of 5-10 seconds and is involved in several physiological and pathological conditions. The effects of palmitic acid on nitric oxide (NO) production by rat skeletal muscle cells and the possible mechanism involved were investigated. Methods: Primary cultured rat skeletal muscle cells were treated with palmitic acid and NO production was assessed by nitrite measurement (Griess method) and 4,5-diaminofluorescein diacetate (DAF-2-DA) assay. Nuclear factor-kappa B (NF-kappa B) activation was evaluated by electrophoretic mobility shift assay and iNOS protein content by western blotting. Results: Palmitic acid treatment increased nitric oxide production. This effect was abolished by treatment with NOS inhibitors, L-nitro-arginine (LNA) and L-nitro-arginine methyl esther (L-NAME). NF-kappa B activation and iNOS content were increased due to palmitic acid treatment. The participation of superoxide on nitric oxide production was investigated by incubating the cells with DAF-2-DA in the presence or absence of palmitic acid, a superoxide generator system (X-XO), a mixture of NOS inhibitors and SOD-PEG (superoxide dismutase linked to polyethylene glycol). Palmitic acid and X-XO system increased NO production and this effect was abolished when cells were treated with NOS inhibitors and also with SOD-PEG. Conclusions: In summary, palmitic acid stimulates NO production in cultured skeletal muscle cells through production of superoxide, nuclear factor-kappa B activation and increase of iNOS protein content. Copyright (C) 2012 S. Karger AG, Basel

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The amino acid arginine (Arg) is a recognized secretagogue of growth hormone (GH), and has been shown to induce GH gene expression. Arg is the natural precursor of nitric oxide (NO), which is known to mediate many of the effects of Arg, such as GH secretion. Arg was also shown to increase calcium influx in pituitary cells, which might contribute to its effects on GH secretion. Although the mechanisms involved in the effects of Arg on GH secretion are well established, little is known about them regarding the control of GH gene expression. We investigated whether the NO pathway and/or calcium are involved in the effects of Arg on GH gene expression in rat isolated pituitaries. To this end, pituitaries from approximately 170 male Wistar rats (~250 g) were removed, divided into two halves, pooled (three hemi-pituitaries) and incubated or not with Arg, as well as with different pharmacological agents. Arg (71 mM), the NO donor sodium nitroprusside (SNP, 1 and 0.1 mM) and a cyclic guanosine monophosphate (cGMP) analogue (8-Br-cGMP, 1 mM) increased GH mRNA expression 60 min later. The NO acceptor hemoglobin (0.3 µM) blunted the effect of SNP, and the combined treatment with Arg and L-NAME (a NO synthase (NOS) inhibitor, 55 mM) abolished the stimulatory effect of Arg on GH gene expression. The calcium channel inhibitor nifedipine (3 µM) also abolished Arg-induced GH gene expression. The present study shows that Arg directly induces GH gene expression in hemi-pituitaries isolated from rats, excluding interference from somatostatinergic neurons, which are supposed to be inhibited by Arg. Moreover, the data demonstrate that the NOS/NO signaling pathway and calcium mediate the Arg effects on GH gene expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: The relationship between the activity of eosinophils and platelets has been observed in recent decades by many scientists. These observations include increased numbers of eosinophils associated with platelet disorders, including changes in the coagulation cascade and platelet aggregation. Based on these observations, the interaction between eosinophils and platelets in platelet aggregation was analyze. MAIN METHODS: Human platelets were incubated with eosinophil cytosolic fraction, promyelocytic human HL-60 clone 15 cell lineage, and eosinophil cationic protein (ECP). Platelet rich plasma (PRP) aggregation was induced by adenosine diphosphate, platelet activating factor, arachidonic acid, and collagen, and washed platelets (WP) were activated by thrombin. KEY FINDINGS: Aggregation induced by all agonists was dose dependently inhibited by eosinophil cytosolic fraction. This inhibition was only partially reversed by previous incubation of the eosinophils with l-Nitro-Arginine-Methyl-Ester (l-NAME). Previous incubation with indomethacin did not prevent the cytosolic fraction induced inhibition. The separation of eosinophil cytosolic fraction by gel filtration on Sephadex G-75 showed that the inhibitory activity was concentrated in the lower molecular weight fraction. HL-60 clone 15 cells differentiated into eosinophils for 5 and 7 day were able to inhibit platelet aggregation. The ECP protein inhibited the platelet aggregation on PRP and WP. This inhibition was more evident in WP, and the citotoxicity MTT assay proved the viability of tested platelets, showing that the observed inhibition by the ECP protein does not occur simply by cell death. SIGNIFICANCE: Our results indicate that eosinophils play a fundamental role in platelet aggregation inhibition