21 resultados para Nd:YAG Laser
Resumo:
Dentine hypersensitivity (DH) is a painful condition and is a clinical challenge due to the different treatment strategies available. High-intensity lasers have been studied as a possible option. The aim of this randomized, controlled, double-blind clinical study was to evaluate the effects of Er:YAG and Er,Cr:YSGG lasers on DH. The study group comprised 28 subjects who met the inclusion criteria. A visual analogue scale was used to quantify sensitivity before treatment as baseline, immediately before and immediately after treatment, and 1 week and 1 month after treatment. Teeth were assigned to four groups: group 1 control (no treatment), group 2 Er:YAG laser treatment (2 Hz/32.4 mJ/5.9 J/cm(2)), group 3 Er,Cr:YSGG laser treatment (0.25 W/4.4 J/cm(2)), and group 4 Er,Cr:YSGG laser treatment (0.50 W/ 8.9 J/cm(2)). Data were collected and submitted to statistical analysis for both evaporative (air) and mechanical (probe) stimulation. For both the air and probe stimulation no differences were observed between the pretreatment sensitivities. With the evaporative stimulus, the pain level immediately after treatment was reduced; however, after this the values remained stable. Irradiation with the Er:YAG laser was associated with the lowest level of pain. With the mechanical stimulus, group 4 showed the most pronounced decrease in pain immediately after treatment; however, by the end of the study, pain levels had increased. Groups 1, 2 and 3 showed a reduction in pain that was significantly different from that in group 4 after the 4 weeks of clinical follow up. Based on the results and within the limits of this study, it can be concluded that none of the laser treatments studied was capable of completely eliminating pain, but the Er:YAG and Er,Cr:YSGG lasers are suitable for the treatment of DH.
Resumo:
The study analised microscopic wound healing of incision made with Er:YAg laser with three different tips. In six Rattus norvegicus, incision was made with Laser Er-YAG (KeyLaser) using tips 2051, 2055 and 2056. The animals were killed at 7 e 14 and the sites of incision are photographed in this time. The parts containing the incision area were prepared for microscopic analysis, performing sections of 7µm and staining with haematoxylin and eosin. Zone of tissue ablation, zone of thermal necrosis, the presence and character of inflammatory cell infiltrate and wound healing were measured. The 2051 tip produced faster and defined edges of the wound. To create wound 1.30 mm in depth lasers tips required at last five passes within the same line of incision. Microscopic analysis shows no difference with use of three different laser tips
Resumo:
Femtosecond lasers have been widely used in laser surgery as an instrument for contact-free tissue removal of hard dental, restorative materials, and osseous tissues, complementing conventional drilling or cutting tools. In order to obtain a laser system that provides an ablation efficiency comparable to mechanical instruments, the laser pulse rate must be maximal without causing thermal damage. The aim of this study was to compare the different morphological characteristics of the hard tissue after exposure to lasers operating in the femtosecond pulse regime. Two different kinds of samples were irradiated: dentin from human extracted teeth and bovine femur samples. Different procedures were applied, while paying special care to preserving the structures. The incubation factor S was calculated to be 0.788 +/- 0.004 for the bovine femur bone. These results indicate that the incubation effect is still substantial during the femtosecond laser ablation of hard tissues. The plasma-induced ablation has reduced side effects, i.e., we observe less thermal and mechanical damage when using a superficial femtosecond laser irradiation close to the threshold conditions. In the femtosecond regime, the morphology characteristics of the cavity were strongly influenced by the change of the effective number of pulses. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). [DOI: 10.1117/1.JBO.17.4.048001]
Resumo:
This study aimed to assess in vitro thermal alterations taking place during the Er:YAG laser cavity preparation of primary tooth enamel at different energies and pulse repetition rates. Forty healthy human primary molars were bisected in a mesio-distal direction, thus providing 80 fragments. Two small orifices were made on the dentin surface to which type K thermocouples were attached. The fragments were individually fixed with wax in a cylindrical PlexiglassA (R) abutment and randomly assigned to eight groups, according to the laser parameters (n = 10): G1 -aEuro parts per thousand 250 mJ/ 3 Hz, G2 -aEuro parts per thousand 250 mJ/ 4 Hz, G3 -aEuro parts per thousand 250 mJ/ 6 Hz, G4 -aEuro parts per thousand 250 mJ/10 Hz, G5 -aEuro parts per thousand 250 mJ/ 15 Hz, G6 -aEuro parts per thousand 300 mJ/ 3 Hz, G7 -aEuro parts per thousand 300 mJ/ 4 Hz and G8 -aEuro parts per thousand 300 mJ/ 6 Hz. An area of 4 mm(2) was delimited. Cavities were done (2 mm long x 2 mm wide x 1 mm thick) using non-contact (12 mm) and focused mode. Temperature values were registered from the start of laser irradiation until the end of cavity preparation. Data were analyzed by one-way ANOVA and Tukey test (p a parts per thousand currency signaEuro parts per thousand 0.05). Groups G1, G2, G6, and G7 were statistically similar and furnished the lowest mean values of temperature rise. The set 250 mJ/10 and 15 Hz yielded the highest temperature values. The sets 250 and 300 mJ and 6 Hz provided temperatures with mean values below the acceptable critical value, suggesting that these parameters ablate the primary tooth enamel. Moreover, the temperature elevation was directly related to the increase in the employed pulse repetition rates. In addition, there was no direct correlation between temperature rise and energy density. Therefore, it is important to use a lower pulse frequency, such as 300 mJ and 6 Hz, during cavity preparation in pediatric patients.
Resumo:
The aim of this study was to evaluate the shear bond strength of repairs in porcelain conditioned with laser. Sixty porcelain discs were made and six groups were formed (n = 10): G1: conditioning with laser with potency 760 mW; G2: conditioning with laser with potency 760 mW and application of 37% phosphoric acid for 15 s; G3: conditioning with laser with potency 900 mW; G4: conditioning with laser with potency 900 mW and application of 37% phosphoric acid for 15 s; G5: application of 37% phosphoric acid for 15 s (group control) and G6: application of 10% hydrofluoric acid for 2 min. The composite resin was insert of incremental layers at the porcelain surface aided with a metal matrix, and photoactivation for 20 s each increment. The specimens were submitted to a thermal cycling by 1000 cycles of 30 s in each bath with temperature between 5 and 55 degrees C. After the thermal cycling, specimens were submitted to the shear bond strength. The results were evaluated statistically through analysis of variance and Tukey's tests with 5% significance. The averages and standard deviation founded were: G1, 11.25 (+/- 3.10); G2, 12.32 (+/- 2.65); G3, 14.02 (+/- 2.38); G4, 13.44 (+/- 2,07); G5, 9.91 (-/+ 2,18); G6, 12.74 (+/- 2.67). The results showed that the femtosecond laser produced a shear bond strength of repairs in porcelain equal to the hydrofluoric acid and significantly superior to the use of phosphoric acid. Microsc. Res. Tech., 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
In this study we compared the microleakage of conventional glass ionomer cement (GIC) restorations following the use of different methods of root caries removal. In vitro root caries were induced in 75 human root dentin samples that were divided in five groups of 15 each according to the method used for caries removal: in group 1 spherical carbide burs at low speed were used, in group 2 a hand-held excavator was used, and in groups 3 to 5 an Er,Cr:YSGG laser was used at 2.25 W, 40.18 J/cm(2) (group 3), 2.50 W, 44.64 J/cm(2) (group 4) and 2.75 W, 49.11 J/cm(2) (group 5). The air/water cooling during irradiation was set to 55%/65% respectively. All cavities were filled with GIC. Five samples from each group were evaluated by scanning electron microscopy (SEM) and the other ten samples were thermocycled and submitted to a microleakage test. The data obtained were compared by ANOVA followed by Fisher's test (pa parts per thousand currency sign0.05). Group 4 showed the lowest microleakage index (56.65 6.30; p < 0.05). There were no significant differences among the other groups. On SEM images samples of groups 1 and 2 showed a more regular interface than the irradiated samples. Demineralized dentin below the restoration was observed, that was probably affected dentin. Group 4 showed the lowest microleakage values compared to the other experimental groups, so under the conditions of the present study the method that provided the lowest microleakage was the Er,Cr:YSGG laser with a power output of 2.5 W yielding an energy density of 44.64 J/cm(2).