20 resultados para Mytilus edulis.
Resumo:
The effect of the addition of passion fruit peel powder (PFPP) on the fermentation kinetics and texture parameters, post-acidification and bacteria counts of probiotic yoghurts made with two milk types were evaluated during 28 days of storage at 4 degrees C. Milks were fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (CY340), and one strain of probiotic bacteria: Lactobacillus acidophilus (L10 and NCFM), Bifidobacterium animalis subsp. lactis (8104 and HN019). The addition of PFPP reduced significantly fermentation time of skim milk co-fermented by the strains L10, NCFM and HN019. At the end of 28-day shelf-life, counts of B. lactis Bl04 were about 1 Log CFU mL(-1) higher in whole yoghurt fermented with PFPP regarding its control but, in general, the addition of PFPP had less influence on counts than the milk type itself. The titratable acidity in yoghurts with PFPP was significantly higher than in their respective controls, and in skim yoghurts higher than in the whole ones. The PFPP increased firmness, consistency (except for the NCFM strain of L acidophilus) and cohesiveness of all skim yoghurts. The results point out the suitability of using passion fruit by-product in the formulation of both skim and whole probiotic yoghurts. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The influence of glycerol concentration (C-g), process temperature (T-p), drying temperature (T-s), and relative humidity (RH) on the properties of achira flour films was initially assessed. The optimized process conditions were C-g of 17g glycerol/100g flour, T-p of 90 degrees C, T-s of 44.8 degrees C, and RH of 36.4%. The films produced under these conditions displayed high mechanical strength (7.0 MPa), low solubility (38.3%). and satisfactory elongation values (14.6%). This study showed that achira flour is a promising source for the development of biodegradable films with good mechanical properties, low water vapor permeability, and solubility compared to films based on other tubers. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Background: Biological invasions are one of the major causes of biodiversity loss, yet remain rather understudied in tropical environments. The Australian palm tree Archontophoenix cunninghamiana was introduced into Brazil for ornamental purposes, but has become an invasive species in urban and suburban forest patches. The substitution of A. cunninghamiana by the native palm Euterpe edulis has been proposed as a management action. Aims: We aimed to evaluate the regeneration potential of these two palm species in an Atlantic forest remnant in south-eastern Brazil where both species occur. Methods: We compared seedling establishment and seed longevity of both species through seed sowing, and also measured the contribution of A. cunninghamiana to the local seed rain and seed bank. Results: Nearly half of the non-anemochoric diaspores collected from the seed rain belonged to A. cunninghamiana, which represented a high propagule pressure in the community. The distribution of the alien palm seeds in the seed rain correlated with the distribution of nearby young and adult individuals inside the forest. Neither A. cunninghamiana nor E. edulis appeared to have a persistent seed bank in a burial experiment; seedling survival experiments suggested a much better performance for A. cunninghamiana, which had a survival rate of ca. 30% compared with a rate of only 3.5% for E. edulis. Conclusions: The results suggest a higher regeneration capacity for the alien palm over the native species when co-occurring in a forest fragment. Management actions are thus proposed to reduce a potential biological invasion process.
Resumo:
Achira (Canna indica L.) is a plant native to the Andes in South America, a starchy source, and its cultivation has expanded to different tropical countries, like Brazil. In order to evaluate the potential of this species, starch and flours with different particle size were obtained from Brazilian achira rhizomes. Proximal analyses, size distribution, SEM, swelling power, solubility, DSC, XRD analysis, and FTIR were performed for characterization of these materials. Flours showed high dietary fiber content (16.532.2% db) and high concentration of starch in the case of the smaller particle size fraction. Significant differences in protein and starch content, swelling power, solubility, and thermal properties were observed between the Brazilian and the Colombian starch. All the studied materials displayed the B-type XRD pattern with relative crystallinity of 20.1% for the flour and between 27.0 and 28.0% for the starches. Results showed that the starch and flour produced from achira rhizomes have great technological potential for use as functional ingredient in the food industry.
Resumo:
Abstract Background Nectar reabsorption is a widely known phenomenon, related to the strategy of resource-recovery and also to maintain the nectar homeostasis at the nectary. The method currently performed to demonstrate nectar being reabsorbed involves the use of radioactive tracers applied to the nectary. Although this method works perfectly, it is complex and requires specific supplies and equipment. Therefore, here we propose an efficient method to obtain a visual demonstration of nectar reabsorption, adapting the use of Lucifer Yellow CH (LYCH), a fluorescent membrane-impermeable dye that can enter the vacuole by endocytosis. Results We applied a LYCH solution to the floral nectary (FN) of Cucurbita pepo L., which is a species known for its ability of nectar reabsorption, and to the extrafloral nectary (EFN) of Passiflora edulis Sims which does not reabsorb the secreted nectar. In all tests performed, we observed that LYCH stained the nectary tissues differentially according to the reabsorption ability of the nectary. The treated FN of C. pepo presented a concentrated fluorescence at the epidermis that decreased at the deeper nectary parenchyma, until reaching the vascular bundles, indicating nectar reabsorption in the flowers of the species. In contrast, treated EFN of P. edulis presented fluorescence only at the cuticle surface, indicating that nectar is not reabsorbed by that particular tissue. Conclusion LYCH is an efficient marker to demonstrate nectar reabsorption.