24 resultados para Multi-objective Optimization (MOO)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Strategic Environmental Assessment (SEA) of the sugar and alcohol sector guides a territorial and sectoral planning that benefits most of the local society and supports this economic activity in all its stages. In this way, the present work aims to determine an index of aggregation of the indicators generated in the baseline of the SEA process, called Index of Sustainability of Expansion of the Sugar and Alcohol Sector (IScana). For this, it was used the normalization of the indicators of each city by the fuzzy logic and attribution of weights by the Analytic Hierarchy Process (AHP). Then, the IScana values had been spatialized in the region of 'Grande Dourados'-Mato Grosso do Sul State. The northern portion concentrated the highest values of IScana, 0.48 and 0.55, referring to the cities of Nova Alvorada do Sul and Rio Brilhante, while, in the central portion, the city of Dourados presented the lowest value, 0.10. The selection of the set of indicators forming the IScana, and their relative importance, was satisfactory for the application of fuzzy logic and AHP techniques. The IScana index supplies objective information regarding the diagnosis of the region for the application of SEA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensor and actuator based on laminated piezocomposite shells have shown increasing demand in the field of smart structures. The distribution of piezoelectric material within material layers affects the performance of these structures; therefore, its amount, shape, size, placement, and polarization should be simultaneously considered in an optimization problem. In addition, previous works suggest the concept of laminated piezocomposite structure that includes fiber-reinforced composite layer can increase the performance of these piezoelectric transducers; however, the design optimization of these devices has not been fully explored yet. Thus, this work aims the development of a methodology using topology optimization techniques for static design of laminated piezocomposite shell structures by considering the optimization of piezoelectric material and polarization distributions together with the optimization of the fiber angle of the composite orthotropic layers, which is free to assume different values along the same composite layer. The finite element model is based on the laminated piezoelectric shell theory, using the degenerate three-dimensional solid approach and first-order shell theory kinematics that accounts for the transverse shear deformation and rotary inertia effects. The topology optimization formulation is implemented by combining the piezoelectric material with penalization and polarization model and the discrete material optimization, where the design variables describe the amount of piezoelectric material and polarization sign at each finite element, with the fiber angles, respectively. Three different objective functions are formulated for the design of actuators, sensors, and energy harvesters. Results of laminated piezocomposite shell transducers are presented to illustrate the method. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrothermomechanical MEMS are essentially microactuators that operate based on the thermoelastic effect induced by the Joule heating of the structure. They can be easily fabricated and require relatively low excitation voltages. However, the actuation time of an electrothermomechanical microdevice is higher than the actuation times related to electrostatic and piezoelectric actuation principles. Thus, in this research, we propose an optimization framework based on the topology optimization method applied to transient problems, to design electrothermomechanical microactuators for response time reduction. The objective is to maximize the integral of the output displacement of the actuator, which is a function of time. The finite element equations that govern the time response of the actuators are provided. Furthermore, the Solid Isotropic Material with Penalization model and Sequential Linear Programming are employed. Finally, a smoothing filter is implemented to control the solution. Results aiming at two distinct applications suggest the proposed approach can provide more than 50% faster actuators. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Social businesses present a new paradigm to capitalism, in which private companies, non-profit organizations and civil society create a new type of business with the main objective of solving social problems with financial sustainability and efficiency through market mechanisms. As any new phenomenon, different authors conceptualize social businesses with distinct views. This article aims to present and characterize three different perspectives of social business definitions: the European, the American and that of the emerging countries. Each one of these views was illustrated by a different Brazilian case. We conclude with the idea that all the cases have similar characteristics, but also relevant differences that are more than merely geographical. The perspectives analyzed in this paper provide an analytical framework for understanding the field of social businesses. Moreover, the cases demonstrate that in the Brazilian context the field of social business is under construction and that as such it draws on different conceptual influences to deal with a complex and challenging reality.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study is presented an economic optimization method to design telescope irrigation laterals (multidiameter) with regular spaced outlets. The proposed analytical hydraulic solution was validated by means of a pipeline composed of three different diameters. The minimum acquisition cost of the telescope pipeline was determined by an ideal arrangement of lengths and respective diameters for each one of the three segments. The mathematical optimization method based on the Lagrange multipliers provides a strategy for finding the maximum or minimum of a function subject to certain constraints. In this case, the objective function describes the acquisition cost of pipes, and the constraints are determined from hydraulic parameters as length of irrigation laterals and total head loss permitted. The developed analytical solution provides the ideal combination of each pipe segment length and respective diameter, resulting in a decreased of the acquisition cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper proposes two new approaches for the sensitivity analysis of multiobjective design optimization problems whose performance functions are highly susceptible to small variations in the design variables and/or design environment parameters. In both methods, the less sensitive design alternatives are preferred over others during the multiobjective optimization process. While taking the first approach, the designer chooses the design variable and/or parameter that causes uncertainties. The designer then associates a robustness index with each design alternative and adds each index as an objective function in the optimization problem. For the second approach, the designer must know, a priori, the interval of variation in the design variables or in the design environment parameters, because the designer will be accepting the interval of variation in the objective functions. The second method does not require any law of probability distribution of uncontrollable variations. Finally, the authors give two illustrative examples to highlight the contributions of the paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work studies the optimization and control of a styrene polymerization reactor. The proposed strategy deals with the case where, because of market conditions and equipment deterioration, the optimal operating point of the continuous reactor is modified significantly along the operation time and the control system has to search for this optimum point, besides keeping the reactor system stable at any possible point. The approach considered here consists of three layers: the Real Time Optimization (RTO), the Model Predictive Control (MPC) and a Target Calculation (TC) that coordinates the communication between the two other layers and guarantees the stability of the whole structure. The proposed algorithm is simulated with the phenomenological model of a styrene polymerization reactor, which has been widely used as a benchmark for process control. The complete optimization structure for the styrene process including disturbances rejection is developed. The simulation results show the robustness of the proposed strategy and the capability to deal with disturbances while the economic objective is optimized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In deterministic optimization, the uncertainties of the structural system (i.e. dimension, model, material, loads, etc) are not explicitly taken into account. Hence, resulting optimal solutions may lead to reduced reliability levels. The objective of reliability based design optimization (RBDO) is to optimize structures guaranteeing that a minimum level of reliability, chosen a priori by the designer, is maintained. Since reliability analysis using the First Order Reliability Method (FORM) is an optimization procedure itself, RBDO (in its classical version) is a double-loop strategy: the reliability analysis (inner loop) and the structural optimization (outer loop). The coupling of these two loops leads to very high computational costs. To reduce the computational burden of RBDO based on FORM, several authors propose decoupling the structural optimization and the reliability analysis. These procedures may be divided in two groups: (i) serial single loop methods and (ii) unilevel methods. The basic idea of serial single loop methods is to decouple the two loops and solve them sequentially, until some convergence criterion is achieved. On the other hand, uni-level methods employ different strategies to obtain a single loop of optimization to solve the RBDO problem. This paper presents a review of such RBDO strategies. A comparison of the performance (computational cost) of the main strategies is presented for several variants of two benchmark problems from the literature and for a structure modeled using the finite element method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant–Kirchhoff constitutive law, and strong differences are found.