23 resultados para Mamba Intestinal Toxin 1


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background. Intestinal ischemia and reperfusion (I/R) is a documented cause of acute lung injury (ALI) and systemic inflammation. We previously reported that obstruction of thoracic lymphatic flow during intestinal I/R blunts pulmonary neutrophil recruitment and microvascular injury and decreases the systemic levels of tumor necrosis factor. Here, we consider the existence of a gut-lung axis promoting the induction of systemic inflammation, whereby drained intestinal lymph stimulates lung expression of adhesion molecules and matrix components and generation of inflammatory mediators. Material and Methods. Upon administration of anesthesia, male Wistar rats were subjected to occlusion of the superior mesenteric artery for 45 min, followed by 2 h of intestinal reperfusion (I/R); groups of rats were subjected to I/R with or without thoracic lymphatic duct ligation immediately before the procedure. The non-manipulated rats were used to investigate basal parameters. Results. Obstruction of thoracic lymphatic flow before intestinal I/R decreased the ability of cultured lung tissue explants to release IL-1 beta, IL-10, and VEGF. In contrast, lymphatic obstruction normalized the elevated lung expression of PECAM-1 caused by intestinal I/R. On the other hand, lung E-selectin expression was significantly reduced, whereas fibronectin expression and collagen synthesis were not affected. Lymph levels of LTB4 and TXB2 were found to be significantly increased. Conclusions. These data suggest that lymph factors drained from the intestine during ischemic trauma stimulate the lung to generate inflammatory mediators and alter the expression of adhesion molecules. Disturbances in lung homeostasis mediated by lymph might contribute to the spread of inflammatory processes, thereby accounting for the systemic inflammation induced by intestinal I/R. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Intestinal mucositis and the closely associated diarrhea are common costly side effects of irinotecan. Cytokine modulators, such as thalidomide and pentoxifylline, are found capable of attenuating intestinal mucositis progression. Nitric oxide (NO) seems to be a key mediator of the antineoplastic drug toxicity. The aim of this study was to investigate the role of NO on the pathogenesis of intestinal mucositis, as well as the participation of cytokines upon inducible nitric oxide synthase (iNOS) expression in irinotecan-induced intestinal mucositis. Methods iNOS-knockout (iNOS(-/-)) and C57BL/6 (WT, wild type) animals (n = 5-6) were given either saline or irinotecan (60 mg/kg i.p for 4 days), with or without pretreatment with aminoguanidine (50 mg/kg s.c.), thalidomide (60 mg/kg s.c), infliximab (5 mg/kg i.v.), or pentoxifylline (1.7 mg/kg s.c). On day 5, diarrhea was assessed, and following euthanasia, proximal intestinal samples were obtained for myeloperoxidase (MPO) and iNOS activity, morphometric analysis, western blot and immunohistochemistry to iNOS, cytokine dosage, and for in vitro evaluation of gut contractility. Results Irinotecan induced severe diarrhea and intestinal smooth muscle over-contractility, accompanied with histopathological changes. Additionally, increased MPO and iNOS activity and iNOS immunoexpression were found in WT animals treated with irinotecan. The rise in MPO, smooth muscle over-contractility, and diarrhea were abrogated in aminoguanidine-treated and iNOS(-/-) mice. Moreover, through western blot, we verified that infliximab and pentoxifylline significantly inhibited irinotecan-induced iNOS expression. In addition, cytokine concentration was found only partially decreased in irinotecan-treated iNOS(-/-) mice when compared with wild-type animals that were given irinotecan. Conclusions This study suggests a role of nitric oxide in the pathogenesis of irinotecan-induced intestinal mucositis and also provides evidence for the participation of cytokines on iNOS induction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stressful situations reduce the welfare, production indices and immune status of chickens. Salmonella spp. are a major zoonotic pathogens that annually cause over 1 billion infections worldwide. We therefore designed the current experiment to analyse the effects of 31 +/- 1 degrees C heat stress (HS) (from 35 to 41 days) on performance parameters, Salmonella invasion and small intestine integrity in broiler chickens infected with Salmonella Enteritidis. We observed that HS decreased body weight gain and feed intake. However, feed conversion was only increased when HS was combined with Salmonella Enteritidis infection. In addition, we observed an increase in serum corticosterone levels in all of the birds that were subjected to HS, showing a hypothalamus-pituitary-adrenal axis activation. Furthermore, mild acute multifocal lymphoplasmacytic enteritis, characterized by foci of heterophil infiltration in the duodenum, jejunum and ileum, was observed in the HS group. In contrast, similar but more evident enteritis was noted in the heat-stressed and Salmonella-infected group. In this group, moderate enteritis was observed in all parts of the small intestine. Lastly, we observed an increase in Salmonella counts in the spleens of the stressed and Salmonella-infected chickens. The combination of HS and Salmonella Enteritidis infection may therefore disrupt the intestinal barrier, which would allow pathogenic bacteria to migrate through the intestinal mucosa to the spleen and generate an inflammatory infiltrate in the gut, decreasing performance parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

alpha-KTx toxin Tc32, from the Amazonian scorpion Tityus cambridgei, lacks the dyad motif; including Lys27, characteristic of the family and generally associated with channel blockage. The toxin has been cloned and expressed for the first time. Electrophysiological experiments, by showing that the recombinant form blocks Kv1.3 channels of olfactory bulb periglomerular cells like the natural Tc32 toxin, when tested on the Kv1.3 channel of human T lymphocytes, confirmed it is in an active fold. The nuclear magnetic resonance-derived structure revealed it exhibits an alpha/beta scaffold typical of the members of the alpha-KTx family. TdK2 and TdK3, all belonging to the same alpha-KTx 18 subfamily, share significant sequence identity with Tc32 but diverse selectivity and affinity for Kv1.3 and Kv1.1 channels. To gain insight into the structural features that may justify those differences, we used the recombinant Tc32 nuclear magnetic resonance-derived structure to model the other two toxins, for which no experimental structure is available. Their interaction with Kv1.3 and Kv1.1 has been investigated by means of docking simulations. The results suggest that differences in the electrostatic features of the toxins and channels, in their contact surfaces, and in their total dipole moment orientations govern the affinity and selectivity of toxins. In addition, we found that, regardless of whether the dyad motif is present, it is always a Lys side chain that physically blocks the channels, irrespective of its position in the toxin sequence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. Results The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. Conclusion Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal ischemia/reperfusion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intestinal ischemia and reperfusion (i-I/R) is an insult associated with acute respiratory distress syndrome (ARDS). It is not known if pro- and anti-inflammatory mediators in ARDS induced by i-I/R can be controlled by low-level laser therapy (LLLT). This study was designed to evaluate the effect of LLLT on tracheal cholinergic reactivity dysfunction and the release of inflammatory mediators from the lung after i-I/R. Anesthetized rats were subjected to superior mesenteric artery occlusion (45 min) and killed after clamp release and preestablished periods of intestinal reperfusion (30 min, 2 or 4 h). The LLLT (660 nm, 7.5 J/cm(2)) was carried out by irradiating the rats on the skin over the right upper bronchus for 15 and 30 min after initiating reperfusion and then euthanizing them 30 min, 2, or 4 h later. Lung edema was measured by the Evans blue extravasation technique, and pulmonary neutrophils were determined by myeloperoxidase (MPO) activity. Pulmonary tumor necrosis factor-α (TNF-α), interleukin-10 (IL-10), intercellular adhesion molecule-1 (ICAM-1), and isoform of NO synthase (iNOS) mRNA expression were analyzed by real-time PCR. TNF-α, IL-10, and iNOS proteins in the lung were measured by the enzyme-linked immunoassay technique. LLLT (660 nm, 7.5 J/cm(2)) restored the tracheal hyperresponsiveness and hyporesponsiveness in all the periods after intestinal reperfusion. Although LLLT reduced edema and MPO activity, it did not do so in all the postreperfusion periods. It was also observed with the ICAM-1 expression. In addition to reducing both TNF-α and iNOS, LLLT increased IL-10 in the lungs of animals subjected to i-I/R. The results indicate that LLLT can control the lung's inflammatory response and the airway reactivity dysfunction by simultaneously reducing both TNF-α and iNOS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Intestinal ischemia/reperfusion (IR) injury is a serious and triggering event in the development of remote organ dysfunction, from which the lung is the main target. This condition is characterized by intense neutrophil recruitment, increased microvascular permeability. Intestinal IR is also responsible for induction of adult respiratory distress syndrome, the most serious and life-threatening form of acute lung injury. The purpose of this study was to investigate the effect of annexin-A1 protein as an endogenous regulator of the organ remote injury induced by intestinal ischemia/reperfusion. Male C57bl/6 mice were subjected to intestinal ischemia, induced by 45 min occlusion of the superior mesenteric artery, followed by reperfusion. RESULTS: The intestinal ischemia/reperfusion evoked a high intensity lung inflammation as indicated by the number of neutrophils as compared to control group. Treatment with annexin-A1 peptidomimetic Ac2-26, reduced the number of neutrophils in the lung tissue and increased its number in the blood vessels, which suggests a regulatory effect of the peptide Ac2-26 in the neutrophil migration. Moreover, the peptide Ac2-26 treatment was associated with higher levels of plasma IL-10. CONCLUSION: Our data suggest that the annexin-A1 peptidomimetic Ac2-26 treatment has a regulatory and protective effect in the intestinal ischemia/reperfusion by attenuation of the leukocyte migration to the lung and induction of the anti-inflammatory cytokine IL-10 release into the plasma. The anti-inflammatory action of annexin-A1 and its peptidomimetic described here may serve as a basis for future therapeutic approach in mitigating inflammatory processes due to intestinal

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aggregatibacter actinomycetemcomitans is an important periodontal pathogen that can participate in periodontitis and other non-oral infections. The cytolethal distending toxin (Cdt) is among the virulence factors produced by this bacterium. The Cdt is also secreted by several mucosa-associated Gram-negative pathogens and may play a role in perpetuating the infection by modulating the immune response. Although the toxin targets a wide range of eukaryotic cell types little is known about its activity on macrophages which play a key part in alerting the rest of the immune system to the presence of pathogens and their virulence factors. In view of this, we tested the hypothesis that the A. actinomycetemcomitans Cdt (AaCdt) disrupts macrophage function by inhibiting phagocytic activity as well as affecting the production of cytokines. Murine macrophages were co-cultured with either wild-type A. actinomycetemcomitans or a Cdt(-) mutant. Viable counts and qPCR showed that phagocytosis of the wild-type strain was significantly reduced relative to that of the Cdt(-) mutant. Addition of recombinant Aa(r)Cdt to co-cultures along with the Cdt(-) mutant diminished the phagocytic activity similar to that observed with the wild type strain. High concentrations of Aa(r)Cdt resulted in decreased phagocytosis of fluorescent bioparticles. Nitric oxide production was modulated by the presence of Cdt and the levels of IL-1β, IL-12 and IL-10 were increased. Production of TNF-α did not differ in the co-culture assays but was increased by the presence of Aa(r)Cdt. These data suggest that the Cdt may modulate macrophage function in A. actinomycetemcomitans infected sites by impairing phagocytosis and modifying the pro-inflammatory/anti-inflammatory cytokine balance.