29 resultados para MH-PPV
Resumo:
This paper investigates the effect of solvent-induced conformational changes of poly(3,6-phenanthrene) on their two-photon absorption (2PA). Such effect was studied employing the wavelength-tunable femtosecond Z-scan technique and modeled using the sum-over-essential states approach. We observed a strong reduction of the 2PA cross-section when the sample was prepared in hexane (poor solvent) in comparison to chloroform (good solvent), which is related to the conformation adopted by the polymer in each case. In chloroform it adopts a random coil conformation, as opposed to the one-handed helix conformation in hexane. Our results pointed out that the coil to helix conformation change decreases the degree of molecular planarity of the polymer pi-conjugated backbone, which is primarily responsible for their optical nonlinearity, contributing to diminishing the effective transition dipole moments and, consequently, the 2PA cross-section. Moreover, by studying the nonlinear response with different light polarization, we showed that, although the solvent-induced conformational change does not alter the molecular symmetry of the polymer, it modifies considerably the direction of the transition dipole moments between the excited states.
Resumo:
de Souza ACCP, Volpini RA, Shimizu MH, Sanches TR, Camara NOS, Semedo P, Rodrigues CE, Seguro AC, Andrade L. Erythropoietin prevents sepsis-related acute kidney injury in rats by inhibiting nuclear factor-kappa B and upregulating endothelial nitric oxide synthase. Am J Physiol Renal Physiol 302: F1045-F1054, 2012. First published January 11, 2012; doi:10.1152/ajprenal.00148.2011.-The pathophysiology of sepsis involves complex cytokine and inflammatory mediator networks, a mechanism to which NF-kappa B activation is central. Downregulation of endothelial nitric oxide synthase (eNOS) contributes to sepsis-induced endothelial dysfunction. Erythropoietin (EPO) has emerged as a major tissue-protective cytokine in the setting of stress. We investigated the role of EPO in sepsis-related acute kidney injury using a cecal ligation and puncture (CLP) model. Wistar rats were divided into three primary groups: control (sham-operated); CLP; and CLP + EPO. EPO (4,000 IU/kg body wt ip) was administered 24 and 1 h before CLP. Another group of rats received N-nitro-L-arginine methyl ester (L-NAME) simultaneously with EPO administration (CLP + EPO + L-NAME). A fifth group (CLP + EPOtreat) received EPO at 1 and 4 h after CLP. At 48 h postprocedure, CLP + EPO rats presented significantly higher inulin clearance than did CLP and CLP + EPO + L-NAME rats; hematocrit levels, mean arterial pressure, and metabolic balance remained unchanged in the CLP + EPO rats; and inulin clearance was significantly higher in CLP + EPOtreat rats than in CLP rats. At 48 h after CLP, creatinine clearance was significantly higher in the CLP + EPO rats than in the CLP rats. In renal tissue, pre-CLP EPO administration prevented the sepsis-induced increase in macrophage infiltration, as well as preserving eNOS expression, EPO receptor (EpoR) expression, IKK-alpha activation, NF-kappa B activation, and inflammatory cytokine levels, thereby increasing survival. We conclude that this protection, which appears to be dependent on EpoR activation and on eNOS expression, is attributable, in part, to inhibition of the inflammatory response via NF-kappa B downregulation.
Resumo:
Objectives. Admission hyperglycemia and B-type natriuretic peptide (BNP) are associated with mortality in acute coronary syndromes, but no study compares their prediction in-hospital death. Methods. Patients with non-ST-elevation myocardial infarction (NSTEMI), in-hospital mortality and two-year mortality or readmission were compared for area under the curve (AUC), sensitivity (SEN), specificity (SPE), positive predictive value (PPV), negative predictive value (NPV), and accuracy (ACC) of glycemia and BNP. Results. Respectively, AUC, SEN, SPE, PPV, NPV, and ACC for prediction of in-hospital mortality were 0.815, 71.4%, 84.3%, 26.3%, 97.4%, and 83.3% for glycemia = 200 mg/dL and 0.748, 71.4%, 68.5%, 15.2%, 96.8% and 68.7% for BNP = 300 pg/mL. AUC of glycemia was similar to BNP (P = 0.411). In multivariate analysis we found glycemia >= 200mg/dL related to in-hospital death (P = 0.004). No difference was found in two-year mortality or readmission in BNP or hyperglycemic subgroups. Conclusion. Hyperglycemia was an independent risk factor for in-hospital mortality in NSTEMI and had a good ROC curve level. Hyperglycemia and BNP, although poor in-hospital predictors of unfavorable events, were independent risk factors for death or length of stay >10 days. No relation was found between hyperglycemia or BNP and long-term events.
Resumo:
Neuroimaging studies suggest anterior-limbic structural brain abnormalities in patients with bipolar disorder (BD), but few studies have shown these abnormalities in unaffected but genetically liable family members. In this study, we report morphometric correlates of genetic risk for BD using voxel-based morphometry. In 35 BD type I (BD-I) patients, 20 unaffected first-degree relatives (UAR) of BD patients and 40 healthy control subjects underwent 3 T magnetic resonance scanner imaging. Preprocessing of images used DARTEL (diffeomorphic anatomical registration through exponentiated lie algebra) for voxel-based morphometry in SPM8 (Wellcome Department of Imaging Neuroscience, London, UK). The whole-brain analysis revealed that the gray matter (GM) volumes of the left anterior insula and right inferior frontal gyrus showed a significant main effect of diagnosis. Multiple comparison analysis showed that the BD-I patients and the UAR subjects had smaller left anterior insular GM volumes compared with the healthy subjects, the BD-I patients had smaller right inferior frontal gyrus compared with the healthy subjects. For white matter (WM) volumes, there was a significant main effect of diagnosis for medial frontal gyrus. The UAR subjects had smaller right medial frontal WM volumes compared with the healthy subjects. These findings suggest that morphometric brain abnormalities of the anterior-limbic neural substrate are associated with family history of BD, which may give insight into the pathophysiology of BD, and be a potential candidate as a morphological endophenotype of BD. Molecular Psychiatry (2012) 17, 412-420; doi: 10.1038/mp.2011.3; published online 15 February 2011
Resumo:
This work reports a detailed spectroscopy study of a series of multiblock conjugated nonconjugated copolymers built by p-phenylene vinylene type units (PV) and octamethylene spacers, namely, poly(1,8-octanedioxy-2,6-dimethoxy-1,4-phenylene-1,2-ethenylene) (LaPPS18). The relative proportions of the PV and aliphatic segments were estimated on the basis of solid-state NMR and Raman spectroscopy. The overall structure was characterized by wide angle X-ray diffraction; H-1 wide-line dipolar chemical shift correlation (DIPSHIFT), and centerband-only detection of exchange (CODEX) NMR data, that together with glass transition temperatures allowed us to identify the groups involved in the molecular dynamics. These different structural properties were used to explain the photoluminescence properties in terms of peak position and spectral profile
Resumo:
Manganese tungstate (MnWO4) nanorods were prepared at room temperature by the co-precipitation method and synthesized after processing in a microwave-hydrothermal (MH) system at 140 degrees C for 6-96 min. These nanorods were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The growth direction, shape and average size distribution of nanorods were observed by means of transmission electron microscopy (TEM) and high resolution TEM (HR-TEM). The optical properties of the nanorods were investigated by ultraviolet visible (UV-vis) absorption and photoluminescence (PL) measurements. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy indicate that the MnWO4 precipitate is not a single phase structure while the nanorods synthesized by MH processing have a wolframite-type monoclinic structure without deleterious phases. FT-Raman spectra exhibited the presence of 17 Raman-active modes from 50 to 1,000 cm(-1). TEM and HR-TEM micrographs indicated that the nanorods are aggregated due to surface energy by Van der Waals forces and grow along the [100] direction. UV-vis absorption measurements confirmed non-linear values for the optical band gap (from 3.2 to 2.72 eV), which increased as the MH processing time increased. The structural characterizations indicated that the presence of defects in the MnWO4 precipitate promotes a significant contribution to maximum PL emission, while MnWO4 nanorods obtained by MH processing decrease the PL emission due to the reduction of defects in the lattice.
Resumo:
In this communication, we report the effect of different surfactants [cetyltrimethylammonium bromide (CTAB), sodium dodecyl sulfate (SDS) and sodium bis(2-ethylhexyl)sulfosuccinate (AOT)] on the shape, growth and photoluminescence (PL) behavior of manganese tungstate (MnWO4) crystals synthesized by the microwave-hydrothermal (MH) method at 413 K for 45 min. These crystals were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), ultraviolet-visible (UV-vis) absorption spectroscopy and PL measurements. XRD patterns proved that these crystals have a monoclinic structure. FE-SEM images showed that MnWO4 crystals exhibit different shapes and growth mechanisms depending on the surfactant employed. The CTAB cationic surfactant promotes the hindrance of small nuclei that leads to the formation of flake-like nanocrystals, while SDS and AOT anionic surfactants promote a growth of crystals to plate-like and leaf-like crystals due to considerable size effect of counter-ions (RSO4- and RSO2O-) and an increase in Na+ ion remnants. UV-vis absorption spectroscopy revealed different optical band gap values due to modifications in the shape, surface and crystal size. Finally, the effect of surfactants on the crystal shapes and average crystal size distribution causing changes in the PL behavior of MnWO4 crystals was explained. (C) 2011 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder Technology Japan. All rights reserved.
Resumo:
The use of laser light to modify the material's surface or bulk as well as to induce changes in the volume through a chemical reaction has received great attention in the last few years, due to the possibility of tailoring the material's properties aiming at technological applications. Here, we report on recent progress of microstructuring and microfabrication in polymeric materials by using femtosecond lasers. In the first part, we describe how polymeric materials' micromachining, either on the surface or bulk, can be employed to change their optical and chemical properties promising for fabricating waveguides, resonators, and self-cleaning surfaces. In the second part, we discuss how two-photon absorption polymerization can be used to fabricate active microstructures by doping the basic resin with molecules presenting biological and optical properties of interest. Such microstructures can be used to fabricate devices with applications in optics, such as microLED, waveguides, and also in medicine, such as scaffolds for tissue growth.
Resumo:
Purpose: To evaluate if the Breast Imaging Reporting and Data System (BI-RADS) ultrasound descriptor of orientation can be used in magnetic resonance imaging (MRI). Materials and Methods: We conducted a retrospective study to evaluate breast mass lesions identified by MRI from 2008 to 2010 who had ultrasound (US) and histopathologic confirmation. Lesions were measured in the craniocaudal (CC), anteroposterior (AP), and transverse (T) axes and classified as having a nonparallel orientation, longest axis perpendicular to Cooper's ligaments, or in a parallel orientation when the longest axis is parallel to Cooper's ligaments. The MR image data were correlated with the US orientation according to BI-RADS and histopathological diagnosis. Results: We evaluated 71 lesions in 64 patients. On MRI, 27 lesions (38.0%) were nonparallel (8 benign and 19 malignant), and 44 lesions (62.0%) were parallel (33 benign and 11 malignant). There was significant agreement between the lesion orientation on US and MRI (kappa value = 0.901). The positive predictive values (PPV) for parallel orientation malignancy on MR and US imaging were 70.4% and 73.1%, respectively. Conclusion: A descriptor of orientation for breast lesions can be used on MRI with PPV for malignant lesions similar to US. J. Magn. Reson. Imaging 2012; 36:13831388. (C) 2012 Wiley Periodicals, Inc.
Resumo:
The efficiency of the charge-carrier photogeneration processes in poly(2,5-bis(3',7'-dimethyl-octyloxy)-1,4-phenylene vinylene) (OC(1)OC10-PPV) has been analyzed by the spectral response of the photocurrent of devices in ITO/polymer/Al structures. The symbatic response of the photocurrent action spectra of the OC1OC10-PPV devices, obtained for light-excitation through the ITO electrode and for forward bias, has been fitted using a phenomenological model which considers that the predominant transport mechanism under external applied electric field is the drift of photogenerated charge-carriers, neglecting charge-carrier diffusion. The proposed model takes into account that charge-carrier photogeneration occurs via intermediate stages of bounded pairs (excitonic states), followed by dissociation processes. Such processes result in two different contributions to the photoconductivity: The first one, associated to direct creation of unbound polaron pairs due to intrinsic photoionization; and the second one is associated to secondary processes like extrinsic photoinjection at the metallic electrodes. The results obtained from the model have shown that the intrinsic component of the photoconductivity at higher excitation energies has a considerably higher efficiency than the extrinsic one, suggesting a dependence on the photon energy for the efficiency of the photogeneration process.
Resumo:
Background Porcine circovirus type 2 (PCV2) has been associated with several disease complexes, including reproductive failure. The aim of this study was to identify the subtypes of PCV2 that are associated with reproductive failure in pigs from the State of São Paulo, Brazil and to investigate co-infections with other infectious organisms. Findings Samples of 168 aborted foetuses or mummified foetuses from five farrow-to-finish swine farms known to be infected with PCV2 and located in the State of São Paulo were tested for PCV2 by polymerase chain reaction (PCR). Positive samples were additionally tested for porcine parvovirus (PPV), Leptospira spp. and Brucella spp. by PCR. PCV2 was detected in 18 of the samples (10.7%). PPV, Brucella spp. and Leptospira spp were found in 2, 10 and 0 cases, respectively. Eleven PCV2 strains were sequenced and determined to be either genotype 2a (n = 1) or 2b (n = 10). Conclusions The findings indicate that the frequency of PCV2 infections in aborted porcine foetuses from the State of São Paulo is rather low (10.7%) and that co-infection with other pathogens is common and may be involved in PCV2 associated reproductive failure. No repeatable, characteristic amino acid motifs for regions of the PCV2 capsid protein seemed to be associated with abortion in sows.
Resumo:
Este trabalho visa avaliar a influência do tipo de polipropileno no comportamento da blenda polipropileno/poliestireno de alto impacto (PP/HIPS) quando exposta à radiação UV. Foram usados uma resina virgem de PP (PPv) e outra reprocessada (PPrep). Inicialmente, avaliou-se o comportamento individual dos componentes da blenda, HIPS, PPv e PPrep, quando submetidos à radiação UV por até 15 semanas de exposição. As técnicas de caracterização utilizadas para monitorar o desempenho tanto das resinas individualmente quanto das blendas submetidas à radiação UV foram: propriedades mecânicas (tração e impacto), medidas de índice de fluidez (MFI), análise térmica (DSC), espectroscopia no infravermelho (FTIR) e microscopia eletrônica de varredura (MEV). A partir dos resultados com essas técnicas verificou-se que o PPv foi a resina mais afetada pela radiação e consequentemente as blendas preparadas com esse PP também foram mais sensíveis à fotodegradação do que as demais. Em termos de fotoestabilização este resultado mostra-se interessante, já que as blendas PP/HIPS preparadas com uma resina previamente degradada necessitariam de menores teores de aditivos do que esse mesmo tipo de blenda preparada com resina virgem.
Resumo:
Introduction Toxoplasmosis may be life-threatening in fetuses and in immune-deficient patients. Conventional laboratory diagnosis of toxoplasmosis is based on the presence of IgM and IgG anti-Toxoplasma gondii antibodies; however, molecular techniques have emerged as alternative tools due to their increased sensitivity. The aim of this study was to compare the performance of 4 PCR-based methods for the laboratory diagnosis of toxoplasmosis. One hundred pregnant women who seroconverted during pregnancy were included in the study. The definition of cases was based on a 12-month follow-up of the infants. Methods Amniotic fluid samples were submitted to DNA extraction and amplification by the following 4 Toxoplasma techniques performed with parasite B1 gene primers: conventional PCR, nested-PCR, multiplex-nested-PCR, and real-time PCR. Seven parameters were analyzed, sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), positive likelihood ratio (PLR), negative likelihood ratio (NLR) and efficiency (Ef). Results Fifty-nine of the 100 infants had toxoplasmosis; 42 (71.2%) had IgM antibodies at birth but were asymptomatic, and the remaining 17 cases had non-detectable IgM antibodies but high IgG antibody titers that were associated with retinochoroiditis in 8 (13.5%) cases, abnormal cranial ultrasound in 5 (8.5%) cases, and signs/symptoms suggestive of infection in 4 (6.8%) cases. The conventional PCR assay detected 50 cases (9 false-negatives), nested-PCR detected 58 cases (1 false-negative and 4 false-positives), multiplex-nested-PCR detected 57 cases (2 false-negatives), and real-time-PCR detected 58 cases (1 false-negative). Conclusions The real-time PCR assay was the best-performing technique based on the parameters of Se (98.3%), Sp (100%), PPV (100%), NPV (97.6%), PLR (â^ž), NLR (0.017), and Ef (99%).
Resumo:
The resistance to photodegradation of poly [(2-methoxy-5-n-hexyloxy)-p-phenylene vinylene] (OC1OC6-PPV) films was significantly enhanced by the use of poly(vinyl alcohol) 99% hydrolyzed as protective coating. The deposition of poly(vinyl alcohol) onto OC1OC6-PPV films did not affect the absorption and the emission spectra of the luminescent polymer. The protected film showed 5% drop on the absorbance at 500nm after 270 hours of light exposure while the unprotected film completely degraded in the same conditions. The conductivity of the protected film remained stable (around 7 × 10-10 S/m) while the value for the unprotected one dropped around two orders of magnitude after 100 hours of light exposure.