24 resultados para MALDI-TOF
Resumo:
A recent addition to the arsenal of tools for glycome analysis is the use of metabolic labels that allow covalent tagging of glycans with imaging probes. In this work we show that N-azidoglucosamine was successfully incorporated into glycolipidic structures of Plasmodium falciparum intraerythrocytic stages. The ability to tag glycoconjugates selectively with a fluorescent reporter group permits TLC detection of the glycolipids providing a new method to quantify dynamic changes in the glycosylation pattern and facilitating direct mass spectrometry analyses. Presence of glycosylphosphatidylinositol and glycosphingolipid structures was determined in the different extracts. Furthermore, the fluorescent tag was used as internal matrix for the MALDI experiment making even easier the analysis. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Charge transport and shelf-degradation of MEH-PPV thin-films were investigated through stationary (e.g. current versus voltage - JxV) and transient (e.g. Time-of-Flight - ToF, Dark-Injection Space-Charge-Limited Current - DI-SCLC, Charge Extraction by Linearly Increasing Voltage - CELN) current techniques. Charge carrier mobility in nanometric films was best characterized through JxV and DI-SCLC. It approaches 10(-6) cm(2)Ns under a SCLC regime with deep traps for light-emitting diode applications. ToF measurements performed on micrometric layers (i.e. - 3 mu m) confirmed studies in 100 nm-thick films as deposited in OLEDs. All results were comparable to a similar poly(para-phenylene vinylene) derivative, MDMO-PPV. Electrical properties extracted from thin-film transistors demonstrated mobility dependence on carrier concentration in the channel (similar to 10(-7)-10(-4) cm(2)/Vs). At low accumulated charge levels and reduced free carrier concentration, a perfect agreement to the previously cited techniques was observed. Degradation was verified through mobility reduction and changes in trap distribution of states. (C) 2011 Elsevier B.V. All rights reserved.
Use of Sugammadex after Neostigmine Incomplete Reversal of Rocuronium-Induced Neuromuscular Blockade
Resumo:
Menezes CC, Peceguini LAM, Silva ED, Simoes CM Use of Sugammadex after Neostigmine Incomplete Reversal of Rocuronium-Induced Neuromuscular Blockade. Background and objectives: Neuromuscular blockers (NMB) have been used for more than half of a century in anesthesia and have always been a challenge for anesthesiologists. Until recently, the reversal of nondepolarizing neuromuscular blockers had only one option: the use of anticholinesterase agents. However, in some situations, such as deep neuromuscular blockade after high doses of relaxant, the use of anticholinesterase agents does not allow adequate reversal of neuromuscular blockade: Recently, sugammadex, a gamma-cyclodextrin, proved to be highly effective for reversal of NMB induced by steroidal agents. Case report: A female patient who underwent an emergency exploratory laparotomy after rapid sequence intubation with rocuronium 1.2 mg.kg(-1). At the end of surgery, the pat ent received neostigmine reversal of NMB. However, neuromuscular junction monitoring did not show the expected recovery, presenting residual paralysis. Sugammadex 2 mg.kg(-1) was used and the patient had complete reversal of NMB in just 2 minutes time. Conclusion: Adequate recovery of residual neuromuscular blockade is required for full control of the pharynx and respiratory functions in order to prevent complications. Adequate recovery can only be obtained by neuromuscular junction monitoring with TOF ratio greater than 0.9. Often, the reversal of NMB with anticholinesterase drugs may not be completely reversed. However, in the absence of objective monitoring this diagnosis is not possible. The case illustrates the diagnosis of residual NMB even after reversal with anticholinesterase agents, resolved with the administration of sugammadex, a safe alternative to reverse the NMB induced by steroidal non-depolarizing agents.
Resumo:
Traditional methods for bacterial identification include Gram staining, culturing, and biochemical assays for phenotypic characterization of the causative organism. These methods can be time-consuming because they require in vitro cultivation of the microorganisms. Recently, however, it has become possible to obtain chemical profiles for lipids, peptides, and proteins that are present in an intact organism, particularly now that new developments have been made for the efficient ionization of biomolecules. MS has therefore become the state-of-the-art technology for microorganism identification in microbiological clinical diagnosis. Here, we introduce an innovative sample preparation method for nonculture-based identification of bacteria in milk. The technique detects characteristic profiles of intact proteins (mostly ribosomal) with the recently introduced MALDI SepsityperTM Kit followed by MALDI-MS. In combination with a dedicated bioinformatics software tool for databank matching, the method allows for almost real-time and reliable genus and species identification. We demonstrate the sensitivity of this protocol by experimentally contaminating pasteurized and homogenized whole milk samples with bacterial loads of 10(3)-10(8) colony-forming units (cfu) of laboratory strains of Escherichia coli, Enterococcus faecalis, and Staphylococcus aureus. For milk samples contaminated with a lower bacterial load (104 cfu mL-1), bacterial identification could be performed after initial incubation at 37 degrees C for 4 h. The sensitivity of the method may be influenced by the bacterial species and count, and therefore, it must be optimized for the specific application. The proposed use of protein markers for nonculture-based bacterial identification allows for high-throughput detection of pathogens present in milk samples. This method could therefore be useful in the veterinary practice and in the dairy industry, such as for the diagnosis of subclinical mastitis and for the sanitary monitoring of raw and processed milk products.
Resumo:
Objectives: The aim of this preliminary study was to characterize the plasma lipid profiling of women with preeclampsia. Design and methods: Plasma samples of 8 pregnant women with early-onset preeclampsia and 8 normal pregnant women were evaluated. Lipids were extracted from plasma using the Bligh-Dyer protocol. The extracts were subjected to MALDI-MS. Data matrix was exported for partial least squares discriminant analysis (PLS-DA) and a parameter VIP was employed to reflect the variable importance in the discriminant analysis. The major discriminant variables were selected and underwent to Mann-Whitney U test. Results: A total of 1290 ions were initially identified and twelve m/z signals were highlighted as the most important lipids for the discrimination of patients with preeclampsia. The identification of these differential lipids was carried out through Lipid Database Search. Conclusions: The main classes identified were glycerophosphocholines [GP01], glycerophosphoserines [GP03], glycerophosphoglycerols [GP04], glycosyldiradylglycerols [GL05] and glycerophosphates [GP10]. (C) 2012 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.
Resumo:
The effects of small fractions of calcium (x = 0, 0.05, 0.1, 0.15, and 0.20) on the structure and the catalytic properties of La2-xCaxCuO4 peroviskites have been investigated. The samples have been synthesized using the co-precipitation method. Perovskite-type oxides were characterized by XRD, TPR, XPS, XANES, SEM, and TEM. Catalytic tests for the water gas shift reaction (WGSR) were carried out in a tubular reactor at 290 degrees C. All samples showed a well-defined perovskite structure with surface areas between 6 and 18 m(2) g(-1). The partial substitution of La by Ca enhanced the stability of the perovskites and increased their reduction temperature. All catalysts were actives for WGSR, and the best catalytic performance was obtained for the La1.85Ca0.15CuO4 catalyst, but the samples with 5 and 10% of Ca had the best TOF values for reaction. These results can be associated to promoter effect of calcium, the high surface area, and the reducible species Cu-0 and Cu1+. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Background: Peroxiredoxins have diverse functions in cellular defense-signaling pathways. 2-Cys-peroxiredoxins (2-Cys-Prx) reduce H2O2 and alkyl-hydroperoxide. This study describes the purification and characterization of a genuine 2-Cys-Prx from Vigna unguiculata (Vu-2-Cys-Prx). Methods: Vu-2-Cys-Prx was purified from leaves by ammonium sulfate fractionation, chitin affinity and ion exchange chromatography. Results: Vu-2-Cys-Prx reduces H2O2 using NADPH and DTT. Vu-2-Cys-Prx is a 44 kDa (SDS-PAGE)/46 kDa (exclusion chromatography) protein that appears as a 22 kDa molecule under reducing conditions, indicating that it is a homodimer linked intermolecularly by disulfide bonds and has a pI range of 4.56-4.72; its NH2-terminal sequence was similar to 2-Cys-Prx from Phaseolus vulgaris (96%) and Populus tricocarpa (96%). Analysis by ESI-Q-TOF MS/MS showed a molecular mass/pI of 28.622 kDa/5.18. Vu-2-Cys-Prx has 8% alpha-helix, 39% beta-sheet, 22% of turns and 31% of unordered forms. Vu-2-Cys-Prx was heat stable, has optimal activity at pH 7.0, and prevented plasmid DNA degradation. Atomic force microscopy shows that Vu-2-Cys-Prx oligomerized in decamers which might be associated with its molecular chaperone activity that prevented denaturation of insulin and citrate synthase. Its cDNA analysis showed that the redox-active Cys(52) residue and the amino acids Pro(45), Thr(49) and Arg(128) are conserved as in other 2-Cys-Prx. General significance: The biochemical and molecular features of Vu-2-Cys-Prx are similar to other members of 2-Cys-Prx family. To date, only one publication reported on the purification of native 2-Cys-Prx from leaves and the subsequent analysis by N-terminal Edman sequencing, which is crucial for construction of stromal recombinant 2-Cys-Prx proteins. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background Signaling by the vitamin A-derived morphogen retinoic acid (RA) is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2) is critical for cardiac development, we screened patients with congenital heart disease (CHDs) for genetic variation at the ALDH1A2 locus. Methods One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430) at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM) simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay. Results We describe in Tetralogy of Fallot (TOF) the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT) design using single marker genotype, or haplotype information do not show differences between cases and controls. Conclusion In summary, our screen indicates that ALDH1A2 genetic variation is present in TOF patients, suggesting a possible causal role for this gene in rare cases of human CHD, but does not support the hypothesis that variation at the ALDH1A2 locus is a significant modifier of the risk for CHD in humans.
Resumo:
O tratamento das lesões condrais e osteocondrais do joelho em pacientes jovens ainda permanece um desafio para os ortopedistas. As técnicas de reparo atualmente disponíveis no Brasil, como o desbridamento, microfraturas e transplante osteocondral autólogo são insuficientes nos tratamentos de lesões condrais e osteocondrais grandes. O transplante osteocondral homólogo a fresco (TOF) na articulação do joelho vem sendo usado nos Estados Unidos com excelentes resultados. Este artigo tem o intuito de revisar a ciência básica, indicações, técnicas cirúrgicas, possíveis complicações e descrever a técnica de transplante osteocondral homólogo a fresco na articulação do joelho realizada no Instituto de Ortopedia e Traumatologia do Hospital das Clínicas da Universidade de São Paulo.