19 resultados para MAIN METABOLITE
Resumo:
Plant secondary metabolites are a group of naturally occurring compound classes biosynthesized by differing biochemical pathways whose plant content and regulation is strongly susceptible to environmental influences and to potential herbal predators. Such abiotic and biotic factors might be specifically induced by means of various mechanisms, which create variation in the accumulation or biogenesis of secondary metabolites. Hence the dynamic aspect of bioactive compound synthesis and accumulation enables plants to communicate and react in order to overcome imminent threats. This contribution aims to review the most important mechanisms of various abiotic and biotic interactions, such as pathogenic microorganisms and herbivory, by which plants respond to exogenous influences, and will also report on time-scale variable influences on secondary metabolite profiles. Transmission of signals in plants commonly occurs by 'semiochemicals', which are comprised of terpenes, phenylpropanoids, benzenoids and other volatile compounds. Due to the important functions of volatile terpenes in communication processes of living organisms, as well as its emission susceptibility relative to exogenous influences, we also present different scenarios of concentration and emission variations. Toxic effects of plants vary depending on the level and type of secondary metabolites. In farming and cattle raising scenarios, the toxicity of plant secondary metabolites and respective concentration shifts may have severe consequences on livestock production and health, culminating in adverse effects on crop yields and/or their human consumers, or have an adverse economic impact. From a wider perspective, herbal medicines, agrochemicals or other natural products are also associated with variability in plant metabolite levels, which can impact the safety and reliable efficacy of these products. We also present typical examples of toxic plants which influence livestock production using Brazilian examples of toxicity of sapogenins and alkaloids on livestock to highlight the problem. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Given the social and territorial features described in feral cats, it is commonly assumed that life in multi-cat households is stressful for domestic cats and suggested that cats kept as single pets are likely to have better welfare. On the other hand, it has been hypothesized that under high densities cats can organize themselves socially thus preventing stress when spatial dispersion is unavailable. This study was aimed at comparing the general arousal underpinning emotional distress in single housed cats and in cats from multi-cat households (2 and 3–4 cats) on the basis of fecal glucocorticoid metabolites (GCM) measured via enzyme immunoassay (EIA). GCM did not significantly vary as a function of living style (single, double or group-housing); highly stressed individuals were equally likely in the three groups. Young cats in multi-cat households had lower GCM, and overall cats that tolerate (as opposed to dislike) petting by the owners tended to have higher GCM levels. Other environmental aspects within cat houses (e.g. relationship with humans, resource availability) may play a more important role in day to day feline arousal levels than the number of cats per se
Resumo:
The species Eremanthus mattogrossensis, known as "veludo do cerrado" (cerrado velvet), is native to the Brazilian Cerrado. Because the amount of metabolites present in plants may be influenced by biological and environmental factors, here we conducted an HPLC-DAD-MS/MS investigation of the metabolite concentrations found in the MeOH/H2O extract of the leaves of this species. The main compounds were identified and quantified, and the metabolites were grouped by chemical class (caffeoylquinic acids, flavonoids, and sesquiterpene lactone). Statistical analysis indicated a straight correlation between the quantity of metabolites and seasonality, suggesting that environmental properties elicit important metabolic responses.
Resumo:
To reliably determine the main physical parameters (masses and ages) of young stars, we must know their distances. While the average distance to nearby star-forming regions (<300 pc) is often known, the distances to individual stars are usually unknown. Individual distances to members of young moving groups can be derived from their radial velocities and proper motions using the convergent-point strategy. We investigate the kinematic properties of the Lupus moving group with the primary objective of deriving individual distances to all group members.