22 resultados para Lysosomal proteinases
Resumo:
Unraveling the repertoire of venom toxins of Bothropoides pauloensis was assessed by snake venomics and venom gland transcriptomic surveys. Both approaches yielded converging overall figures, pointing to metalloproteinases (similar to 37%), PLA(2)s (26-32%), and vasoactive (bradykinin-potentiating) peptides (12-17%) as the major toxin classes. The high occurrence of SVMPs, PLA(2) molecules, vasoactive peptides, along with serine proteinases, explains the local and systemic effects observed in envenomations by B. pauloensis. Minor (<3%) C-type lectin, serine proteinase, L-amino acid oxidase, nerve growth factor, and CRISP molecules were also identified in the transcriptome and the proteome. Low abundance (0.3%) EST singletons coding for vascular endothelial growth factor (svVEGF), ohanin, hyaluronidase, and 5' nucleotidase were found only in the venom gland cDNA library. At the molecular level, the transcriptomic and proteomic datasets display low compositional concordance. In particular, although there is good agreement between transcriptome and proteome in the identity of BPPs, PLA(2) molecules and L-amino acid oxidase, both datasets strongly depart in their C-type lectin and SVMP complements. These data support the view that venom composition is influenced by transcriptional and translational mechanisms and emphasize the value of combining proteomic and transcriptomic approaches to acquire a more complete understanding of the toxinological profile and natural history of the snake venom. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background: Ipomoea carnea (I. carnea) is a poisonous plant found in Brazil and other tropical countries that often poison livestock. The plant contains the alkaloids calystegines and mainly swainsonine, which inhibit cellular enzymes and cause systematic cell death. The objective of this study was to evaluate the perinatal effects of I. carnea in goats. Methods: Forty-seven pregnant goats were randomly allocated into 5 treatment groups and given the following doses (g/kg BW) of I. carnea: 0 (IC0), 1.0 (IC1), 3.0 (IC3), 5.0 (IC5) and 7.5 (IC7). The treatment animals were given fresh I. carnea from day 27 of gestation to parturition. Weight gains and serum biochemistry were evaluated. Fetuses were evaluated using ultrasonographic measurements. Results: Goats from the IC7 group showed clinical signs of poisoning. Ultrasound examination revealed that I. carnea feeding in all treatment groups reduced fetal movement compared to the controls. There was an increase in the total number of birth defects (retrognathia and arthrogyposis) in the IC7 and IC5 groups compared to the controls. Conclusion: The results show that I. carnea has teratogenic potential in goats. In addition, ultrasounds were useful in evaluating fetotoxicity and teratogenicity. Birth Defects Res (Part B) 00:17, 2012. (c) 2012 Wiley Periodicals, Inc.
Resumo:
Bromelain is an aqueous extract of pineapple that contains a complex mixture of proteases and non-protease components. These enzymes perform an important role in proteolytic modulation of the cellular matrix in numerous physiologic processes, including anti-inflammatory, anti-thrombotic and fibrinolytic functions. Due to the scale of global production of pineapple (Ananas comosus L.), and the high percentage of waste generated in their cultivation and processing, several studies have been conducted on the recovery of bromelain. The aim of this study was to purify bromelain from pineapple wastes using an easy-to-scale-up process of precipitation by ethanol. The results showed that bromelain was recovered by using ethanol at concentrations of 30% and 70%, in which a purification factor of 2.28 fold was achieved, and yielded more than 98% of the total enzymatic activity. This enzyme proved to be susceptible to denaturation after the lyophilization process. However, by using 10% (w/v) glucose as a cryoprotector, it was possible to preserve 90% of the original enzymatic activity. The efficiency of the purification process was confirmed by SDS-PAGE, and native-PAGE electrophoresis, fluorimetry, circular dichroism and FTIR analyzes, showing that this method could be used to obtain highly purified and structurally stable bromelain. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Fabry disease (FD) is an X-linked inborn error of glycosphingolipid catabolism that results from mutations in the alpha-galactosidase A (GLA) gene. Evaluating the enzymatic activity in male individuals usually performs the diagnosis of the disease, but in female carriers the diagnosis based only on enzyme assays is often inconclusive. In this work, we analyzed 568 individuals from 102 families with suspect of FD. Overall, 51 families presented 38 alterations in the GLA gene, among which 19 were not previously reported in literature. The alterations included 17 missense mutations, 7 nonsense mutations, 7 deletions, 6 insertions and 1 in the splice site. Six alterations (R112C, R118C, R220X, R227X, R342Q and R356W) occurred at CpG dinucleotides. Five mutations not previously described in the literature (A156D, K237X, A292V, I317S, c.1177_1178insG) were correlated with low GLA enzyme activity and with prediction of molecular damages. From the 13 deletions and insertions, 7 occurred in exons 6 or 7 (54%) and 11 led to the formation of a stop codon. The present study highlights the detection of new genomic alterations in the GLA gene in the Brazilian population, facilitating the selection of patients for recombinant enzyme-replacement trials and offering the possibility to perform prenatal diagnosis. Journal of Human Genetics (2012) 57, 347-351; doi:10.1038/jhg.2012.32; published online 3 May 2012
Resumo:
Impaired activity of the lysosomal enzyme glucocerebrosidase (GCR) results in the inherited metabolic disorder known as Gaucher disease. Current treatment consists of enzyme replacement therapy by administration of exogenous GCR. Although effective, it is exceptionally expensive, and patients worldwide have a limited access to this medicine. In Brazil, the public healthcare system provides the drug free of charge for all Gaucher's patients, which reaches the order of $ 84million per year. However, the production of GCR by public institutions in Brazil would reduce significantly the therapy costs. Here, we describe a robust protocol for the generation of a cell line producing recombinant human GCR. The protein was expressed in CHO-DXB11 (dhfr(-)) cells after stable transfection and gene amplification with methotrexate. As expected, glycosylated GCR was detected by immunoblotting assay both as cell-associated (similar to 64 and 59 kDa) and secreted (63-69 kDa) form. Analysis of subclones allowed the selection of stable CHO cells producing a secreted functional enzyme, with a calculated productivity of 5.14 pg/cell/day for the highest producer. Although being laborious, traditionalmethods of screening high-producing recombinant cellsmay represent a valuable alternative to generate expensive biopharmaceuticals in countries with limited resources.
Resumo:
Native Inga laurina (Fabaceae) trypsin inhibitor (ILTI) was tested for anti-insect activity against Diatraea saccharalis and Heliothis virescens larvae. The addition of 0.1% ILTI to the diet of D. saccharalis did not alter larval survival but decreased larval weight by 51%. The H. virescens larvae that were fed a diet containing 0.5% ILTI showed an 84% decrease in weight. ILTI was not digested by the midgut proteinases of either species of larvae. The trypsin levels were reduced by 55.3% in the feces of D. saccharalis and increased by 24.1% in the feces of H. virescens. The trypsin activity in both species fed with ILTI was sensitive to the inhibitor, suggesting that no novel proteinase resistant to ILTI was induced. Additionally, ILTI exhibited inhibitory activity against the proteinases present in the larval midgut of different species of Lepidoptera. The organization of the ilti gene was elucidated by analyzing its corresponding genomic sequence. The recombinant ILTI protein (reILTI) was expressed and purified, and its efficacy was evaluated. Both native ILTI and reILTI exhibited a similar strong inhibitory effect on bovine trypsin activity. These results suggest that ILTI presents insecticidal properties against both insects and may thus be a useful tool in the genetic engineering of plants. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
Niemann-Pick disease type C (NP-C) is a rare, progressive, irreversible disease leading to disabling neurological manifestations and premature death. The estimated disease incidence is 1:120,000 live births, but this likely represents an underestimate, as the disease may be under-diagnosed due to its highly heterogeneous presentation. NP-C is characterised by visceral, neurological and psychiatric manifestations that are not specific to the disease and that can be found in other conditions. The aim of this review is to provide non-specialists with an expert-based, detailed description of NP-C signs and symptoms, including how they present in patients and how they can be assessed. Early disease detection should rely on seeking a combination of signs and symptoms, rather than isolated findings. Examples of combinations which are strongly suggestive of NP-C include: splenomegaly and vertical supranuclear gaze palsy (VSGP); splenomegaly and clumsiness; splenomegaly and schizophrenia-like psychosis; psychotic symptoms and cognitive decline; and ataxia with dystonia, dysarthria/dysphagia and cognitive decline. VSGP is a hallmark of NP-C and becomes highly specific of the disease when it occurs in combination with other manifestations (e.g. splenomegaly, ataxia). In young infants (<2 years), abnormal saccades may first manifest as slowing and shortening of upward saccades, long before gaze palsy onset. While visceral manifestations tend to predominate during the perinatal and infantile period (2 months–6 years of age), neurological and psychiatric involvement is more prominent during the juvenile/adult period (>6 years of age). Psychosis in NP-C is atypical and variably responsive to treatment. Progressive cognitive decline, which always occurs in patients with NP-C, manifests as memory and executive impairment in juvenile/adult patients. Disease prognosis mainly correlates with the age at onset of the neurological signs, with early-onset forms progressing faster. Therefore, a detailed and descriptive picture of NP-C signs and symptoms may help improve disease detection and early diagnosis, so that therapy with miglustat (Zavesca®), the only available treatment approved to date, can be started as soon as neurological symptoms appear, in order to slow disease progression.