16 resultados para Liquid crystalline systems


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A delivery system containing polymeric (Eudragit) nanoparticles has been developed for encapsulation and controlled release of bioactive flavonoids (quercetin). Nanoparticles were fabricated using a solvent displacement method. Particle size, morphology, and charge were measured by light scattering, electron microscopy and zeta-potential. Encapsulation efficiency (EE) and release profiles were determined using electrochemical methods. Molecular interactions within the particle matrix were characterized by X-ray diffraction, differential scanning calorimetry, and infrared spectroscopy. Antioxidant properties of free and encapsulated quercetin were analyzed by TBARS and fluorescence spectroscopy. Bioaccessibility of quercetin was evaluated using an in vitro digestion model. Relatively small (d a parts per thousand aEuro parts per thousand 370 nm) anionic polymeric nanoparticles were formed containing quercetin in a non-crystalline form (EE a parts per thousand aEuro parts per thousand 67 %). The main interaction between quercetin and Eudragit was hydrogen bonding. Encapsulated quercetin remained stable during 6 months storage and maintained its antioxidant activity. Quercetin bioaccessibility within simulated small intestinal conditions was improved by encapsulation. The knowledge obtained from this study will facilitate the rational design and fabrication of polymeric nanoparticles as oral delivery systems for encapsulation, protection, and release of bioactive compounds.