26 resultados para LITHIUM PERCHLORATE
Resumo:
Background: Dysregulation of HPA axis has been widely described in subjects with bipolar disorder (BD), including changes in cortisol levels during mood episodes and euthymia. However, most of the studies were done with medicated BD patients with variable length of illness, which was shown to interfere on peripheral cortisol levels. Therefore, the present study aims to evaluate plasma cortisol levels in drug-naive BD subjects during the first manic episode, as well as investigate the relationship between plasma cortisol levels and manic symptomatology. Methods: Twenty-six drug-naive patients were enrolled meeting criteria for a first manic episode in bipolar I disorder. Severity of mania was assessed using the Young Mania Rating Scale (YMRS). The control group included 27 healthy subjects matched by age and gender. Cortisol was quantified using a direct radioimmunoassay. Results: Plasma cortisol levels were decreased during first manic episode compared to healthy controls. Higher cortisol levels were positively associated with the presence of irritability (dysphoria), while elated mania showed lower cortisol levels compared to controls. Limitation: Data including larger samples are lacking. Conclusion: Higher cortisol in dysphoric mania compared to predominantly elated/euphoric mania may indicate a clinical and neurobiological polymorphic phenomenon, potentially involving a higher biological sensitivity to stress in the presence of irritable mood. The present findings highlight the importance to add a dimensional approach to the traditional categorical diagnosis for future neurobiological studies in BD. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Addition of salts, especially perchlorates, to zwitterionic micelles of SB3-14, C(14)H(29)NMe(2)(+)(CH(2))(3)SO(3)(-), induces anionic character and uptake of H(3)O(+) by SB3-14 micelles. Thus, the addition of alkali metal perchlorates accelerates the acid hydrolysis of 2-(p-heptoxypheny1)-1,3-dioxolane, HPD, in the presence of SB3-14 micelles, which depends on the local proton concentration at the micelle surface. The addition of metal chlorides to solutions of such perchlorate-modified SB3-14 micelles decreases both the negative zeta potential of the micelles and the observed rate constant for acid hydrolysis of HPD. The effect of the monovalent cations Li(+), Na(+), and K(+) is smaller than that of the divalent cations Be(2+), Mg(2+), and Ca(2+), and much smaller than that of the trivalent cations Al(3+), La(3+), and Er(3+). The major factor responsible for this cation valence dependence of these effects is shown to be electrostatic in nature, reflecting the strong dependence of the micellar surface potential on the cation valence. The fact that the salt effects are not identical after correction for the electrostatic effects indicates that additional secondary nonelectrostatic effects may contribute as well.
Resumo:
The effect of trace quantities of ammonia on oxygen reduction reaction (ORR) on carbon-supported platinum catalysts in perchloric acid solutions is assessed using rotating ring disk electrode (RRDE) technique. The study demonstrates that ammonia has detrimental effects on ORR. The most significant effect takes place in the potential region above 0.7 V vs RHE. The effect is explained by the electrochemical oxidation of ammonia, which blocks Pt active sites and increases the formation of H2O2. This leads to losses in the disk currents and increments in the ring currents. The apparent losses in ORR currents may occur in two ways, namely, through the blocking of the active sites for ORR as well as by generating a small anodic current, which is believed to have a lower contribution. In addition, a detrimental effect of sodium cations in the potential range below 0.75 V vs RHE was demonstrated. This effect is most likely due to the co-adsorption of sodium cations and perchlorate anions on the Pt surface. Copyright (C) 2012, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.
Resumo:
Iodine is a critical element involved in thyroid hormone synthesis. Its efflux into the follicular lumen is thought to occur, in part, through pendrin at the apical membrane of thyrocytes. This study attempted to investigate whether iodide administration affects SLC26A4 mRNA expression in rat thyroid and in PCCl3 cells. Rats and cells were treated or not with Nal from 30 min up to 48 h. One group was concomitantly treated with sodium perchlorate. SLC26A4 mRNA expression was also investigated in PCCl3 cells treated with actinomycin D prior to Nal treatment. Iodide administration significantly increased SLC26A4 mRNA content in both models. The simultaneous administration of Nal and perchlorate, as well as the treatment of PCCl3 cells with actinomycin D prevented this effect, indicating that intracellular iodide is essential for this event, which appears to be triggered by transcriptional mechanisms. These data show that intracellular iodide rapidly upregulates SLC26A4 mRNA expression. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Iodide excess acutely downregulates NIS mRNA expression, as already demonstrated. PCCl3 cells treated or not with Nal, Nal + NaClO4 or Nal + Methimazole, for 30 min to 24 h, were used to further explore how iodide reduces NIS gene expression. NIS mRNA expression was evaluated by Real-Time PCR; its poly(A) tail length, by RACE-PAT; its translation rate, by polysome profile; total NIS content, by Western blotting. NIS mRNA decay rate was evaluated in actinomycin-D-treated cells, incubated with or without Nal for 0-6 h. Iodide treatment caused a reduction in NIS mRNA expression, half-life, poly(A) tail length, recruitment to ribosomes, as well as NIS protein expression. Perchlorate, but not methimazole, prevented these effects. Therefore, reduced poly(A) tail length of NIS mRNA seems to be related to its decreased half-life, in addition to its translation impairment. These data provide new insights about the molecular mechanisms involved in the rapid and posttranscriptional inhibitory effect of iodide on NIS expression. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Post-rest contraction (PRC) of cardiac muscle provides indirect information about the intracellular calcium handling. Objective: Our aim was to study the behavior of PRC, and its underlying mechanisms, in rats with myocardial infarction. Methods: Six weeks after coronary occlusion, the contractility of papillary muscles (PM) obtained from sham-operated (C, n = 17), moderate infarcted (MMI, n = 10) and large infarcted (LMI, n = 14) rats was evaluated, following rest intervals of 10 to 60 seconds before and after incubation with lithium chloride (Li+) substituting sodium chloride or ryanodine (Ry). Protein expression of SR Ca(2+)-ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLB) and phospho-Ser(16)-PLB were analyzed by Western blotting. Results: MMI exhibited reduced PRC potentiation when compared to C. Opposing the normal potentiation for C, post-rest decays of force were observed in LMI muscles. In addition, Ry blocked PRC decay or potentiation observed in LMI and C; Li+ inhibited NCX and converted PRC decay to potentiation in LMI. Although MMI and LMI presented decreased SERCA2 (72 +/- 7% and 47 +/- 9% of Control, respectively) and phospho-Ser(16)-PLB (75 +/- 5% and 46 +/- 11%, respectively) protein expression, overexpression of NCX (175 +/- 20%) was only observed in LMI muscles. Conclusion: Our results showed, for the first time ever, that myocardial remodeling after MI in rats may change the regular potentiation to post-rest decay by affecting myocyte Ca(2+) handling proteins. (Arq Bras Cardiol 2012;98(3):243-251)
Resumo:
Vanadium oxide nanotubes constitute promising materials for applications in nanoelectronics as cathode materials, in sensor technology and in catalysis. In this work we present a study on hybrid vanadium oxide/hexadecylamine multiwall nanotubes doped with Co ions using state of the art x-ray diffraction and absorption techniques, to address the issue of the dopant location within the nanotubes' structure. The x-ray absorption near-edge structure analysis shows that the Co ions in the nanotubes are in the 2+ oxidation state, while extended x-ray absorption fine structure spectroscopy reveals the local environment of the Co2+ ions. Results indicate that Co atoms are exchanged at the interface between the vanadium oxide's layers and the hexadecylamines, reducing the amount of amine chains and therefore the interlayer distance, but preserving the tubular shape. The findings in this work are important for describing Co2+ interaction with vanadium oxide nanotubes at the molecular level and will help to improve the understanding of their physicochemical behavior, which is desired in view of their promising applications.
Resumo:
Plasticized natural macromolecules-based polymer electrolyte samples were prepared and characterized. The plasticization of chitosonium acetate with glycerol increased the ionic conductivity value from 3.0 x 10(-7) S/cm to 1.1 x 10(-5) S/cm. The conductivity temperature relationship of the samples exhibits either VTF or Arrhenius type depending on the glycerol concentration in the sample. The dielectric studies evidencing the relaxation process in the plasticized sample at low frequency region are due to the electric polarization effect. Moreover, the samples were transparent in the Vis region, showed thermal stability up to 160 degrees C and good surface uniformity.
Resumo:
Gellan-based polymer electrolytes (PEs), doped with lithium iodide (LiI), were prepared and their electrical properties were characterized. The samples are thermally stable up to 234 degrees C and exhibit ionic conductivity of 3.8 x 10(-4) S/cm at room temperature for the sample doped with 40 wt% of LiI. Addition of 10 wt% of glycerol promotes an increase of the ionic conductivity to 1.5 x 10(-3) S/cm, which remains stable up to 100 degrees C. The activation energies of 2.4 to 12.4 kJ/mol were derived from the Arrhenius model. The repeated ionic conductivity measurements as a function of temperature show that these membranes can be reversibly used between the room temperature and 100 degrees C.
Resumo:
MoritaBaylisHillman derivatives have been extensively investigated as intermediates in the preparation of important classes of compounds. However, there are intrinsic limitations regarding the structure of the Michael electrophile acceptors, the aldehydes, and the catalysts. Therefore, this transformation has several drawbacks, including, for example, its long reaction times. Herein we present a simple, general, fast, and high-yielding protocol for the one-pot synthesis of MoritaBaylisHillman derivatives. Our approach is driven by a lithium selenolate Michael/aldol operation with concomitant O-functionalization/selenoxide elimination cascade sequences.
Resumo:
A lesão do núcleo mediano da rafe (NMR) produz sintomas que sugerem validade de face ao episódio maníaco. Esta pesquisa avaliou o efeito do lítio sobre a hiperatividade locomotora induzida por esta lesão. Vinte e um ratos Wistar machos foram submetidos à lesão eletrolítica da região do NMR (LR) e 17 foram submetidos à lesão fictícia (LF). Após recuperação, a atividade locomotora foi avaliada na caixa de atividade (Med Associates/ENV-515). Parte dos animais destes grupos recebeu tratamentos com lítio (47,5 mg/kg/2x dia i.p.) por 10 dias, enquanto o restante foi tratado com salina no mesmo esquema. A reavaliação ao final dos tratamentos demonstrou que o lítio reduziu significantemente a atividade locomotora em relação à avaliação inicial no grupo LR (ANOVA/Bonferroni p < 0,05), tornando-a equivalente aos baixos níveis dos grupos LF. Estes dados sustentam a hipótese de que as manifestações induzidas pela lesão do NMR podem constituir um modelo animal de mania.