17 resultados para Insulin Gene


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The Vitamin D Receptor gene (VDR) is expressed in many tissues and modulates the expression of several other genes. The purpose of this study was to investigate the association between metabolic syndrome (MetSyn) with the presence of VDR 2228570 C > T and VDR 1544410 A > G polymorphisms in Brazilian adults. Methods Two hundred forty three (243) individuals were included in a cross-sectional study. MetSyn was classified using the criteria proposed by National Cholesterol Educational Program - Adult Treatment Panel III. Insulin resistance and β cell secretion were estimated by the mathematical models of HOMA IR and β, respectively. The VDR 2228570 C > T and VDR 1544410 A > G polymorphisms were detected by enzymatic digestion and confirmed by allele specific PCR or amplification of refractory mutation. Results Individuals with MetSyn and heterozygosis for VDR 2228570 C > T have higher concentrations of iPTH and HOMA β than those without this polymorphism, and subjects with recessive homozygosis for the same polymorphisms presented higher insulin resistance than those with the heterozygous genotype. There is no association among VDR 1544410 A > G and components of MetSyn, HOMA IR and β, serum vitamin D (25(OH)D3) and intact parathormone (iPTH) levels in patients with MetSyn. A significant lower concentration of 25(OH)D3 was observed only in individuals without MetSyn in the VDR 1544410 A > G genotype. Additionally, individuals without MetSyn and heterozygosis for VDR 2228570 C > T presented higher concentration of triglycerides and lower HDL than those without this polymorphism. Conclusions Using two common VDR polymorphism data suggests they may influence insulin secretion, insulin resistance an serum HDL-cholesterol in our highly heterogeneous population. Whether VDR polymorphism may influence the severity of MetSyn component disorder, warrants examination in larger cohorts used for genome-wide association studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Solute carrier 2a2 (Slc2a2) gene codifies the glucose transporter GLUT2, a key protein for glucose flux in hepatocytes and renal epithelial cells of proximal tubule. In diabetes mellitus, hepatic and tubular glucose output has been related to Slc2a2/GLUT2 overexpression; and controlling the expression of this gene may be an important adjuvant way to improve glycemic homeostasis. Thus, the present study investigated transcriptional mechanisms involved in the diabetes-induced overexpression of the Slc2a2 gene. MAIN METHODS: Hepatocyte nuclear factors 1α and 4α (HNF-1α and HNF-4α), forkhead box A2 (FOXA2), sterol regulatory element binding protein-1c (SREBP-1c) and the CCAAT-enhancer-binding protein (C/EBPβ) mRNA expression (RT-PCR) and binding activity into the Slc2a2 promoter (electrophoretic mobility assay) were analyzed in the liver and kidney of diabetic and 6-day insulin-treated diabetic rats. KEY FINDINGS: Slc2a2/GLUT2 expression increased by more than 50% (P<0.001) in the liver and kidney of diabetic rats, and 6-day insulin treatment restores these values to those observed in non-diabetic animals. Similarly, the mRNA expression and the binding activity of HNF-1α, HNF-4α and FOXA2 increased by 50 to 100% (P<0.05 to P<0.001), also returning to values of non-diabetic rats after insulin treatment. Neither the Srebf1 and Cebpb mRNA expression, nor the SREBP-1c and C/EBP-β binding activity was altered in diabetic rats. SIGNIFICANCE: HNF-1α, HNF-4α and FOXA2 transcriptional factors are involved in diabetes-induced overexpression of Slc2a2 gene in the liver and kidney. These data point out that these transcriptional factors are important targets to control GLUT2 expression in these tissues, which can contribute to glycemic homeostasis in diabetes.