39 resultados para HPV Vaccine, bivalent vaccine, quadrivalent vaccine efficacy women.
Resumo:
An important step when designing a vaccine is identifying the antigens that function as targets of naturally acquired antibodies. We investigated specific antibody responses against two Plasmodium vivax vaccine candidates, PvMSP-1(19) and PvMSP-3 alpha(359-798). Moreover, we assessed the relationship between these antibodies and morbidity parameters. PvMSP-1(19) was the most immunogenic antigen and the frequency of responders to this protein tended to increase in P. vivax patients with higher parasitemia. For both antigens, IgG antibody responses tended to be lower in patients who had experienced their first bout of malaria. Furthermore, anemic patients presented higher IgG antibody responses to PvMSP-3 alpha(359-798). Since the humoral response involves a number of antibodies acting simultaneously on different targets, we performed a Principal Component Analysis (PCA). Anemic patients had, on average, higher first principal component scores (IgG1/IgG2/IgG3/IgG4 anti-MSP3 alpha), which were negatively correlated with hemoglobin levels. Since antibodies against PfMSP-3 have been strongly associated with clinical protection, we cannot exclude the possibility of a dual role of PvMSP-3 specific antibodies in both immunity and pathogenesis of vivax malaria. Our results confirm the high immunogenicity of the conserved C terminus of PvMSP-1 and points to the considerable immunogenicity of polymorphic PvMSP-3 alpha(359-798) during natural infection. (C) 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
T-cell based vaccine approaches have emerged to counteract HIV-1/AIDS. Broad, polyfunctional and cytotoxic CD4(+) T-cell responses have been associated with control of HIV-1 replication, which supports the inclusion of CD4(+) T-cell epitopes in vaccines. A successful HIV-1 vaccine should also be designed to overcome viral genetic diversity and be able to confer immunity in a high proportion of immunized individuals from a diverse HLA-bearing population. In this study, we rationally designed a multiepitopic DNA vaccine in order to elicit broad and cross-clade CD4(+) T-cell responses against highly conserved and promiscuous peptides from the HIV-1 M-group consensus sequence. We identified 27 conserved, multiple HLA-DR-binding peptides in the HIV-1 M-group consensus sequences of Gag, Pol, Nef, Vif, Vpr, Rev and Vpu using the TEPITOPE algorithm. The peptides bound in vitro to an average of 12 out of the 17 tested HLA-DR molecules and also to several molecules such as HLA-DP, -DQ and murine IA(b) and IA(d). Sixteen out of the 27 peptides were recognized by PBMC from patients infected with different HIV-1 variants and 72% of such patients recognized at least 1 peptide. Immunization with a DNA vaccine (HIVBr27) encoding the identified peptides elicited IFN-gamma secretion against 11 out of the 27 peptides in BALB/c mice; CD4(+) and CD8(+) T-cell proliferation was observed against 8 and 6 peptides, respectively. HIVBr27 immunization elicited cross-clade T-cell responses against several HIV-1 peptide variants. Polyfunctional CD4(+) and CD8(+) T cells, able to simultaneously proliferate and produce IFN-gamma and TNF-alpha, were also observed. This vaccine concept may cope with HIV-1 genetic diversity as well as provide increased population coverage, which are desirable features for an efficacious strategy against HIV-1/AIDS.
Resumo:
Background: The sieve analysis for the Step trial found evidence that breakthrough HIV-1 sequences for MRKAd5/HIV-1 Gag/Pol/Nef vaccine recipients were more divergent from the vaccine insert than placebo sequences in regions with predicted epitopes. We linked the viral sequence data with immune response and acute viral load data to explore mechanisms for and consequences of the observed sieve effect. Methods: Ninety-one male participants (37 placebo and 54 vaccine recipients) were included; viral sequences were obtained at the time of HIV-1 diagnosis. T-cell responses were measured 4 weeks post-second vaccination and at the first or second week post-diagnosis. Acute viral load was obtained at RNA-positive and antibody-negative visits. Findings: Vaccine recipients had a greater magnitude of post-infection CD8+ T cell response than placebo recipients (median 1.68% vs 1.18%; p = 0.04) and greater breadth of post-infection response (median 4.5 vs 2; p = 0.06). Viral sequences for vaccine recipients were marginally more divergent from the insert than placebo sequences in regions of Nef targeted by pre-infection immune responses (p = 0.04; Pol p = 0.13; Gag p = 0.89). Magnitude and breadth of pre-infection responses did not correlate with distance of the viral sequence to the insert (p. 0.50). Acute log viral load trended lower in vaccine versus placebo recipients (estimated mean 4.7 vs 5.1) but the difference was not significant (p = 0.27). Neither was acute viral load associated with distance of the viral sequence to the insert (p>0.30). Interpretation: Despite evidence of anamnestic responses, the sieve effect was not well explained by available measures of T-cell immunogenicity. Sequence divergence from the vaccine was not significantly associated with acute viral load. While point estimates suggested weak vaccine suppression of viral load, the result was not significant and more viral load data would be needed to detect suppression.
Resumo:
Human infections with EHEC such as O157:H7 have been a great concern for worldwide food-industry surveillance. This pathogen is commonly associated with bloody diarrhea that can evolve to the life-threatening hemolytic uremic syndrome. Animals are the natural reservoir where this pathogen remains asymptomatically, in steps of ingestion and colonization of the bowel. The bacterium is shed in the feces, contaminating the surroundings, including water and food that are directed for human consumption. A major player in this colonization process is intimin, an outer membrane adhesion molecule encoded by the E. coli attachment and effacement (eae) gene that has been shown to be essential for intimate bacterial attachment to eukaryotic host cells. In an attempt to reduce the colonization of animal reservoirs with EHEC O157:H7, we designed a vaccine model to induce an immune response against intimin gamma. The model is based on its recombinant expression in attenuated Salmonella, used as a suitable vaccine vector because of its recognized ability to deliver recombinant antigens and to elicit all forms of immunity: mucosal, systemic, and humoral responses. To test this model, mice were orally immunized with a S. enterica serovar Typhimurium strain carrying the pYA3137eaeA vector, and challenged with E. coli O157:H7. Here we show that immunization induced the production of high levels of specific IgG and IgA antibodies and promoted reduction in the fecal shedding of EHEC after challenge. The live recombinant vaccine reported herein may contribute to the efforts of reducing animal intestinal mucosa colonization.
Resumo:
Visceral leishmaniasis (VL) is a serious lethal parasitic disease caused by Leishmania donovani in Asia and by Leishmania infantum chagasi in southern Europe and South America. VL is endemic in 47 countries with an annual incidence estimated to be 500 000 cases. This high incidence is due in part to the lack of an efficacious vaccine. Here, we introduce an innovative approach to directly identify parasite vaccine candidate antigens that are abundantly produced in vivo in humans with VL. We combined RP-HPLC and mass spectrometry and categorized three L. infantum chagasi proteins, presumably produced in spleen, liver and bone marrow lesions and excreted in the patients urine. Specifically, these proteins were the following: Li-isd1 (XP_001467866.1), Li-txn1 (XP_001466642.1) and Li-ntf2 (XP_001463738.1). Initial vaccine validation studies were performed with the rLi-ntf2 protein produced in Escherichia coli mixed with the adjuvant BpMPLA-SE. This formulation stimulated potent Th1 response in BALB/c mice. Compared to control animals, mice immunized with Li-ntf2+ BpMPLA-SE had a marked parasite burden reduction in spleens at 40 days post-challenge with virulent L. infantum chagasi. These results strongly support the proposed antigen discovery strategy of vaccine candidates to VL and opens novel possibilities for vaccine development to other serious infectious diseases.
Resumo:
Objectives The aim of the present paper is to evaluate the immune response and tolerability of varicella vaccine in children and adolescents with systemic lupus erythematosus previously exposed to varicella-zoster virus. Methods We performed a prospective and controlled study on a group of 54 SLE patients that were chosen at random to be or not to be vaccinated (28 were vaccinated and 26 were not). Twenty-eight healthy controls, of matching age and sex were also vaccinated. All were submitted to a questionnaire, physical evaluation and laboratory assays: lymphocyte immuno-phenotyping by flow cytometry, plasma varicella zoster virus (VZV) serology by ELISA and in vitro interferon gamma (IFN gamma) production by T-cells after stimulus with VZV antigen. They were evaluated before vaccination and at 30, 45, 180 and 360 days afterwards. Results We did not observe any differences in the frequency of adverse events in both vaccinated groups. At study entry, all individuals were seropositive for VZV antibodies. The serum VZV antibody titres similarly increased after vaccination. The frequency of flares and the SLEDAI score were also similar among the patients. Thirty days after vaccination the production of IFN gamma specific to VZV was lower in the SLE group compared to healthy, controls. In the follow-up we observed 4 cases of herpes zoster in the SLE unvaccinated group, but no zoster in the vaccinated group. Conclusion The varicella vaccine was well tolerated in SLE group, who had pre-existing immunity to varicella. The varicella vaccine immunogenicity measurement by serum antibody titres was appropriate. The incidence of HZ was lower in the vaccinated lupus group.
Resumo:
Rabies is a viral encephalitis, nearly always fatal, but preventable through vaccines. Rabid animal bite is the prime transmission act, while veterinary vaccination is one of the best strategies for rabies general prevention. Aluminum compounds and saponin are the commercial adjuvants used for this vaccine nowadays. Nevertheless, aluminum compounds can provoke undesired side effects and saponin has a narrow activity range without toxicity. B. atrophaeus inactivated spores (BAIS), with or without saponin, were then used as an alternative to boost the inactivated rabies virus response. BAIS was as effective as saponin in augmenting antibody titers, but combination of both adjuvants doubled the titers raised by them individually. The combined adjuvant formulation maintained viability for 21 months when stored at 4-8 degrees C. Overall, BAIS was demonstrated as a viable alternative to commercial adjuvants, while its combination with saponin resulted in even higher vaccine potency with good stability. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Immunological adjuvants that induce T cell-mediate immunity (TCMI) with the least side effects are needed for the development of human vaccines. Glycoinositolphospholipids (GIPL) and CpGs oligodeoxynucleotides (CpG ODNs) derived from the protozoa parasite Trypanosoma cruzi induce potent pro-inflammatory reaction through activation of Toll-Like Receptor (TLR) 4 and TLR9, respectively. Here, using mouse models, we tested the T. cruzi derived TLR agonists as immunological adjuvants in an antitumor vaccine. For comparison, we used well-established TLR agonists, such as the bacterial derived monophosphoryl lipid A (MPL), lipopeptide (Pam3Cys), and CpG ODN. All tested TLR agonists were comparable to induce antibody responses, whereas significant differences were noticed in their ability to elicit CD4(+) T and CD8(+) T cell responses. In particular, both GIPLs (GTH, and GY) and CpG ODNs (B344, B297 and B128) derived from T. cruzi elicited interferon-gamma (IFN-gamma) production by CD4(+) T cells. On the other hand, the parasite derived CpG ODNs, but not GIPLs, elicited a potent IFN-gamma response by CD8(+) T lymphocytes. The side effects were also evaluated by local pain (hypernociception). The intensity of hypernociception induced by vaccination was alleviated by administration of an analgesic drug without affecting protective immunity. Finally, the level of protective immunity against the NY-ESO-1 expressing melanoma was associated with the magnitude of both CD4+ T and CD8+ T cell responses elicited by a specific immunological adjuvant.
Resumo:
Background: Hepatitis B virus (HBV) infection is a major cause of morbidity and mortality worldwide. Chronic hepatitis B infection is associated with an increased risk of cirrhosis, hepatic decompensation, and hepatocellular carcinoma. Our aim is to analyze, through a mathematical model, the potential impact of anti-HBV vaccine in the long-term (that is, decades after vaccination) number of LT. Methods: The model simulated that the prevalence of HBV infection was 0.5% and that approximately 20% of all the liver transplantation carried out in the state of Sao Paulo are due to HBV infection. Results: The theoretical model suggests that a vaccination program that would cover 80% of the target population would reach a maximum of about 14% reduction in the LT program. Conclusion: Increasing the vaccination coverage against HBV in the state of Sao Paulo would have a relatively low impact on the number of liver transplantation. In addition, this impact would take several decades to materialize due to the long incubation period of liver failure due to HBV.
Resumo:
Objectives The aim of the present paper is to assess the influence of demographic, muscle enzymes, JDM scores and treatment on non-adjuvanted influenza A H1N1/2009 vaccine immunogenicity in juvenile dermatomyositis (JDM) patients. Methods Thirty JDM patients and 81 healthy age-matched controls were vaccinated. All participants were evaluated pre- and 21 days post-vaccination and serology for anti-HI NI was performed by haemagglutination inhibition assay. Muscle enzymes, JDM scores and treatment were evaluated before and after vaccination. Adverse events were reported. Results After immunisation seroconversion rates were significantly lower in JDM patients compared to age-matched controls (86.7 vs. 97.5%, p=0.044), whereas seropmtection (p=0.121), geometric mean titres (GMT) (p=0.992) and factor increase (FI) in GMT (p=0.827) were similar in both groups. Clinical and labomtorial evaluations revealed that JDM scores and muscle enzymes remained stable throughout the study (p>0.05). A higher frequency of chronic course was observed in non-seroconverted compared to seroconverted (100% vs. 27%, p=0.012). Regarding treatment, a lower rate of seroconversion was observed in patients under prednisone>20mg/day (50% vs. 4%, p=0.039), and in those treated with a combination of prednisone, methotrexate and cyclosporine (50% vs. 4%, p=0.039). Local and systemic vaccine adverse events were mild and similar in patients and controls (p>0.05). Conclusion This study identified that chronic course and immunosuppressive therapy are the major factors hampering seroconversion was JDM, suggesting that a specific protocol may be required for this subgroup of patients. In spite of that, a single dose of non-adjuvanted influenza A/H1N1 2009 vaccine was generally seroprotective in this disease with no evident deleterious effect in disease itself (ClinicalTrials.gov, no. NCT01151644).
Resumo:
Objective. To assess the immunogenicity and safety of non-adjuvanted influenza A H1N1/2009 vaccine in patients with juvenile autoimmune rheumatic disease (ARD) and healthy controls, because data are limited to the adult rheumatologic population. Method's. A total of 237 patients with juvenile ARD [juvenile systemic lupus erythematosus (JSLE), juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), juvenile scleroderma, and vasculitis] and 91 healthy controls were vaccinated. Serology for anti-H1N1 was performed by hemagglutination inhibition assay. Seroprotection rate, seroconversion rate, and factor-increase in geometric mean titer (GMT) were calculated. Adverse events were evaluated. Results. Age was comparable in patients and controls (14.8 +/- 3.0 vs 14.6 +/- 3.7 years, respectively; p = 0.47). Three weeks after immunization, seroprotection rate (81.4% vs 95.6%; p = 0.0007), seroconversion rate (74.3 vs 95.6%; p < 0.0001), and the factor-increase in GMT (12.9 vs 20.3; p = 0.012) were significantly lower in patients with juvenile ARD versus controls. Subgroup analysis revealed reduced seroconversion rates in JSLE (p < 0.0001), JIA (p = 0.008), JDM (p = 0.025), and vasculitis (p = 0.017). Seroprotection (p < 0.0001) and GMT (p < 0.0001) were decreased only in JSLE. Glucocorticoid use and lymphopenia were associated with lower seroconversion rates (60.4 vs 82.9%; p = 0.0001; and 55.6 vs 77.2%; p = 0.012). Multivariate logistic regression including diseases, lymphopenia, glucocorticoid, and immunosuppressants demonstrated that only glucocorticoid use (p = 0.012) remained significant. Conclusion. This is the largest study to demonstrate a reduced but adequate immune response to H1N1 vaccine in patients with juvenile ARD. It identified current glucocorticoid use as the major factor for decreased antibody production. The short-term safety results support its routine recommendation for patients with juvenile ARD. ClinicalTrials.gov; NCT01151644. (First Release Nov 15 2011; J Rheumatol 2012;39:167-73; doi:10.3899/jrheum.110721)
Resumo:
MHC class la-restricted CD8(+) T cells are important mediators of the adaptive immune response against infections caused by intracellular microorganisms. Whereas antigen-specific effector CD8(+) T cells can clear infection caused by intracellular pathogens, in some circumstances, the immune response is suboptimal and the microorganisms survive, causing host death or chronic infection. Here, we explored the cellular and molecular mechanisms that could explain why CD8(+) T-cell-mediated immunity during infection with the human protozoan parasite Trypanosoma cruzi is not optimal. For that purpose, we compared the CD8(+) T-cell mediated immune responses in mice infected with T. cruzi or vaccinated with a recombinant adenovirus expressing an immunodominant parasite antigen. Several functional and phenotypic characteristics of specific CD8(+) T cells overlapped. Among few exceptions was an accelerated expansion of the immune response in adenoviral vaccinated mice when compared to infected ones. Also, there was an upregulated expression of the apoptotic-signaling receptor CD95 on the surface of specific T cells from infected mice, which was not observed in the case of adenoviral-vaccinated mice. Most importantly, adenoviral vaccine provided at the time of infection significantly reduced the upregulation of CD95 expression and the proapoptotic phenotype of pathogen-specific CD8(+) cells expanded during infection. In parallel, infected adenovirus-vaccinated mice had a stronger CD8(+) T-cell mediated immune response and survived an otherwise lethal infection. We concluded that a suboptimal CD8(+) T-cell response is associated with an upregulation of CD95 expression and a proapoptotic phenotype. Both can be blocked by adenoviral vaccination.
Resumo:
Developing vaccines to prevent the establishment of HIV infection has been fraught with difficulties. It might therefore be important to consider other new strategies. Since several studies suggest that anti-inflammatory stimuli can protect from HIV infection and because HIV replicates preferably in activated T cells, we suggest here that the reduction of immune activation through a HIV-specific regulatory T-cell vaccine might thwart early viral replication. Thus, because immune activation is a good predictor of disease progression and the immune activation set point has been shown to be an early event during HIV infection, vaccinating to achieve control of early virus-specific immune activation might be advantageous.
Resumo:
Abstract Background Polysaccharide pneumococcal vaccine is recommended for use in HIV-infected adults in Brazil but there is uncertainty about its effectiveness in this patient population. The main objective of this study was to assess the effectiveness of the 23-valent polysaccharide pneumococcal vaccine against invasive pneumococcal infection among HIV-infected adult patients in São Paulo, Brazil. Methods A case-control study of 79 cases and 242 controls matched on CD4+ cell count and health care setting was conducted. Among HIV-infected adults in São Paulo, Brazil, with and without S. pneumoniae recovered from a normally sterile site; prior receipt of 23 valent polysaccharide pneumococcal vaccine was determined by review of medical records and patient interview. Results After adjustment for confounding factors, the point estimate for the effectiveness of 23 valent polysaccharide vaccine among HIV-infected adults against all invasive pneumococcal infection was 18% (95% CI: <0 to 62%). Conclusion We were unable to demonstrate a statistically significant protective effect of 23 valent polysaccharide against invasive pneumococcal infection vaccine among HIV-infected adults in Brazil. While the vaccine is relatively inexpensive and safe, its effectiveness among HIV-infected adults in Brazil is uncertain.
Resumo:
Abstract Background Our group previously demonstrated that a DNA plasmid encoding the mycobacterial 65-kDa heat shock protein (DNA-HSP65) displayed prophylactic and therapeutic effect in a mice model for tuberculosis. This protection was attributed to induction of a strong cellular immunity against HSP65. As specific immunity to HSP60 family has been detected in arthritis, multiple sclerosis and diabetes, the vaccination procedure with DNA-HSP65 could induce a cross-reactive immune response that could trigger or worsen these autoimmune diseases. Methods In this investigation was evaluated the effect of a previous vaccination with DNA-HSP65 on diabetes development induced by Streptozotocin (STZ). C57BL/6 mice received three vaccine doses or the corresponding empty vector and were then injected with multiple low doses of STZ. Results DNA-HSP65 vaccination protected mice from STZ induced insulitis and this was associated with higher production of IL-10 in spleen and also in the islets. This protective effect was also concomitant with the appearance of a regulatory cell population in the spleen and a decreased infiltration of the islets by T CD8+ lymphocytes. The vector (DNAv) also determined immunomodulation but its protective effect against insulitis was very discrete. Conclusion The data presented in this study encourages a further investigation in the regulatory potential of the DNA-HSP65 construct. Our findings have important implications for the development of new immune therapy strategies to combat autoimmune diseases.