25 resultados para HOMOGENEOUS SPACES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyse several examples of separable Banach spaces, some of them new, and relate them to several dichotomies obtained in [11], by classifying them according to which side of the dichotomies they fall.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show that for real quasi-homogeneous singularities f : (R-m, 0) -> (R-2, 0) with isolated singular point at the origin, the projection map of the Milnor fibration S-epsilon(m-1) \ K-epsilon -> S-1 is given by f/parallel to f parallel to. Moreover, for these singularities the two versions of the Milnor fibration, on the sphere and on a Milnor tube, are equivalent. In order to prove this, we show that the flow of the Euler vector field plays and important role. In addition, we present, in an easy way, a characterization of the critical points of the projection (f/parallel to f parallel to) : S-epsilon(m-1) \ K-epsilon -> S-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For a locally compact Hausdorff space K and a Banach space X we denote by C-0(K, X) the space of X-valued continuous functions on K which vanish at infinity, provided with the supremum norm. Let n be a positive integer, Gamma an infinite set with the discrete topology, and X a Banach space having non-trivial cotype. We first prove that if the nth derived set of K is not empty, then the Banach-Mazur distance between C-0(Gamma, X) and C-0(K, X) is greater than or equal to 2n + 1. We also show that the Banach-Mazur distance between C-0(N, X) and C([1, omega(n)k], X) is exactly 2n + 1, for any positive integers n and k. These results extend and provide a vector-valued version of some 1970 Cambern theorems, concerning the cases where n = 1 and X is the scalar field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Well determined radial velocities and abundances are essential for analyzing the properties of the globular cluster system of the Milky Way. However more than 50% of these clusters have no spectroscopic measure of their metallicity. In this context, this work provides new radial velocities and abundances for twenty Milky Way globular clusters which lack or have poorly known values for these quantities. The radial velocities and abundances are derived from spectra obtained at the Ca II triplet using the FORS2 imager and spectrograph at the VLT, calibrated with spectra of red giants in a number of clusters with well determined abundances. For about half of the clusters in our sample we present significant revisions of the existing velocities or abundances, or both. We also confirm the existence of a sizable abundance spread in the globular cluster M 54, which lies at the center of the Sagittarius dwarf galaxy. In addition evidence is provided for the existence of a small intrinsic internal abundance spread (sigma[Fe/H](int) approximate to 0.11-0.14 dex, similar to that of M 54) in the luminous distant globular cluster NGC 5824. This cluster thus joins the small number of Galactic globular clusters known to possess internal metallicity ([Fe/H]) spreads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work we study C (a)-hypoellipticity in spaces of ultradistributions for analytic linear partial differential operators. Our main tool is a new a-priori inequality, which is stated in terms of the behaviour of holomorphic functions on appropriate wedges. In particular, for sum of squares operators satisfying Hormander's condition, we thus obtain a new method for studying analytic hypoellipticity for such a class. We also show how this method can be explicitly applied by studying a model operator, which is constructed as a perturbation of the so-called Baouendi-Goulaouic operator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of two recently developed pressure spaces has been assessed numerically: The space proposed by Ausas et al. [R.F. Ausas, F.S. Sousa, G.C. Buscaglia, An improved finite element space for discontinuous pressures, Comput. Methods Appl. Mech. Engrg. 199 (2010) 1019-1031], which is capable of representing discontinuous pressures, and the space proposed by Coppola-Owen and Codina [A.H. Coppola-Owen, R. Codina, Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions, Int. J. Numer. Methods Fluids, 49 (2005) 1287-1304], which can represent discontinuities in pressure gradients. We assess the stability of these spaces by numerically computing the inf-sup constants of several meshes. The inf-sup constant results as the solution of a generalized eigenvalue problems. Both spaces are in this way confirmed to be stable in their original form. An application of the same numerical assessment tool to the stabilized equal-order P-1/P-1 formulation is then reported. An interesting finding is that the stabilization coefficient can be safely set to zero in an arbitrary band of elements without compromising the formulation's stability. An analogous result is also reported for the mini-element P-1(+)/P-1 when the velocity bubbles are removed in an arbitrary band of elements. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze reproducing kernel Hilbert spaces of positive definite kernels on a topological space X being either first countable or locally compact. The results include versions of Mercer's theorem and theorems on the embedding of these spaces into spaces of continuous and square integrable functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract (2,250 Maximum Characters): Several theories of tidal evolution, since the theory developed by Darwin in the XIX century, are based on the figure of equilibrium of the tidally deformed body. Frequently the adopted figure is a Jeans prolate spheroid. In some case, however, the rotation is important and Roche ellipsoids are used. The main limitations of these models are (a) they refer to homogeneous bodies; (b) the rotation axis is perpendicular to the plane of the orbit. This communication aims at presenting several results in which these hypotheses are not done. In what concerns the non-homogeneity, the presented results concerns initially bodies formed by N homogeneous layers and we study the non sphericity of each layer and relate them to the density distribution. The result is similar to the Clairaut figure of equilibrium, often used in planetary sciences, but taking into full account the tidal deformation. The case of the rotation axis non perpendicular to the orbital plane is much more complex and the study has been restricted for the moment to the case of homogeneous bodies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the action of a weighted Fourier–Laplace transform on the functions in the reproducing kernel Hilbert space (RKHS) associated with a positive definite kernel on the sphere. After defining a notion of smoothness implied by the transform, we show that smoothness of the kernel implies the same smoothness for the generating elements (spherical harmonics) in the Mercer expansion of the kernel. We prove a reproducing property for the weighted Fourier–Laplace transform of the functions in the RKHS and embed the RKHS into spaces of smooth functions. Some relevant properties of the embedding are considered, including compactness and boundedness. The approach taken in the paper includes two important notions of differentiability characterized by weighted Fourier–Laplace transforms: fractional derivatives and Laplace–Beltrami derivatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article is a continuation of our previous work [5], where we formulated general existence theorems for pullback exponential attractors for asymptotically compact evolution processes in Banach spaces and discussed its implications in the autonomous case. We now study properties of the attractors and use our theoretical results to prove the existence of pullback exponential attractors in two examples, where previous results do not apply.