46 resultados para Glycogen Synthase Kinase 3


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cediranib is a potent inhibitor of the VEGF family receptor tyrosine kinases, and a new agent in cancer treatment. The drug has shown promising activity in a variety of solid malignancies, in preclinical models and in clinical trials. Its pharmacokinetics allow for a convenient once-daily administration, with a toxicity profile that is very similar to other VEGF inhibitors. Its main side effects include hypertension, nausea, dysphonia, fatigue and diarrhea. Adverse events seem to be manageable, especially when used in doses lower than 45 mg/day. Studies have shown some activity as a single agent or in combination in advanced tumors, but not enough to secure its approval for routine use up to now. Clinical trials are still evaluating the role of cediranib in combination chemotherapy with cytotoxic agents.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome is a complex immunologic disease caused by mutation of the autoimmune regulator (AIRE) gene. Autoimmunity in patients with APECED syndrome has been shown to result from deficiency of AIRE function in transcriptional regulation of thymic peripheral tissue antigens, which leads to defective T-cell negative selection. Candidal susceptibility in patients with APECED syndrome is thought to result from aberrant adaptive immunity. Objective: To determine whether AIRE could function in anticandidal innate immune signaling, we investigated an extrathymic role for AIRE in the immune recognition of beta-glucan through the Dectin-1 pathway, which is required for defense against Candida species. Methods: Innate immune signaling through the Dectin-1 pathway was assessed in both PBMCs from patients with APECED syndrome and a monocytic cell line. Subcellular localization of AIRE was assessed by using confocal microscopy. Results: PBMCs from patients with APECED syndrome had reduced TNF-alpha responses after Dectin-1 ligation but in part used a Raf-1-mediated pathway to preserve function. In the THP-1 human monocytic cell line, reducing AIRE expression resulted in significantly decreased TNF-a release after Dectin-1 ligation. AIRE formed a transient complex with the known Dectin-1 pathway components phosphorylated spleen tyrosine kinase and caspase recruitment domain-containing protein 9 after receptor ligation and localized with Dectin-1 at the cell membrane. Conclusion: AIRE can participate in the Dectin-1 signaling pathway, indicating a novel extrathymic role for AIRE and a defect that likely contributes to fungal susceptibility in patients with APECED syndrome. (J Allergy Clin Immunol 2012;129:464-72.)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heart responds to sustained overload by hypertrophic growth in which the myocytes distinctly thicken or elongate on increases in systolic or diastolic stress. Though potentially adaptive, hypertrophy itself may predispose to cardiac dysfunction in pathological settings. The mechanisms underlying the diverse morphology and outcomes of hypertrophy are uncertain. Here we used a focal adhesion kinase (FAK) cardiac-specific transgenic mice model (FAK-Tg) to explore the function of this non-receptor tyrosine kinase on the regulation of myocyte growth. FAK-Tg mice displayed a phenocopy of concentric cardiac hypertrophy, reflecting the relative thickening of the individual myocytes. Moreover, FAK-Tg mice showed structural, functional and molecular features of a compensated hypertrophic growth, and preserved responses to chronic pressure overload. Mechanistically, FAK overexpression resulted in enhanced myocardial FAK activity, which was proven by treatment with a selective FAK inhibitor to be required for the cardiac hypertrophy in this model. Our results indicate that upregulation of FAK does not affect the activity of Src/ERK1/2 pathway, but stimulated signaling by a cascade that encompasses PI3K, AKT, mTOR, S6K and rpS6. Moreover, inhibition of the mTOR complex by rapamycin extinguished the cardiac hypertrophy of the transgenic FAK mice. These findings uncover a unique role for FAK in regulating the signaling mechanisms that governs the selective myocyte growth in width, likely controlling the activity of PI3K/AKT/mTOR pathway, and suggest that FAK activation could be important for the adaptive response to increases in cardiac afterload. This article is part of a Special Issue entitled "Local Signaling in Myocytes". (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed an efficient method for the synthesis of functionalized C-glycosyl 1,2,3-triazoles through a Cu(1)-promoted azide-alkyne 1,3-dipolar cycloaddition between a TMS-protected C-alkynyl-glycoside and organic azides. The reaction was accelerated by ultrasound irradiation and the addition of a base was not necessary to obtain the 1,2,3-triazole product. Moreover, further manipulation of the products led to chiral molecules with a C-glycoside linkage. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study aimed to investigate the association of endothelial nitric oxide synthase (eNOS) gene polymorphisms with primary open angle glaucoma (POAG). We conducted a case-control study that included 90 patients with POAG and 127 healthy controls whose blood samples were genotyped for the functional polymorphisms T-786C and Glu298Asp of the eNOS gene by Taqman fluorescent allelic discrimination assay. The T-786C polymorphism was significantly associated as a risk factor for POAG among women (OR: 228; 95% CI: 1.11 to 4.70, p = 0.024) and marginally associated to the risk of POAG in the patients >= 52 years of age at diagnosis (OR: 2.11; 95% CI: 0.98 to 4.55, p = 0,055). However, these results was not confirmed after adjustments for gender, age, self-declared skin color, tobacco smoking and eNOS genotypes by multivariate logistic regression model (OR: 2.08; 95% CI: 0.87 to 5.01, p = 0.101 and OR: 2.20; 95% CI: 0.95 to 5.12, p = 0.067, respectively). The haplotype CG of T-786C and Glu298Asp showed a borderline association with risk of POAG in the overall analysis (OR: 1.76; 95% CI: 0.98 to 3.14, p = 0.055) and among women (OR: 2.02; 95% CI: 0.98 to 4.16, p = 0.052). Furthermore, the CG haplotype was significantly associated with the development of POAG for the age at diagnosis group >= 52 years (OR: 3.48; 95% CI: 1.54 to 7.84, p = 0.002). We suggested that haplotypes of the polymorphisms T-786C and Glu298Asp of eNOS may interact with gender and age in modulating the risk of POAG. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In the literature, there are several experimental models that induce scoliosis in rats; however, they make use of drugs or invasive interventions to generate a scoliotic curve. Objectives: To design and apply a non-invasive immobilization model to induce scoliosis in rats. Methods: Four-week old male Wistar rats (85 +/- 3.3 g) were divided into two groups: control (CG) and scoliosis (SG). The animals in the SG were immobilized by two vests (scapular and pelvic) made from polyvinyl chloride (PVC) and externally attached to each other by a retainer that regulated the scoliosis angle for twelve weeks with left convexity. After immobilization, the abdominal, intercostal, paravertebral, and pectoral muscles were collected for chemical and metabolic analyses. Radiographic reports were performed every 30 days over a 16-week period. Results: The model was effective in the induction of scoliosis, even 30 days after immobilization, with a stable angle of 28 +/- 5 degrees. The chemical and metabolic analyses showed a decrease (p<0.05) in the glycogenic reserves and in the relationship between DNA and total protein reserves of all the muscles analyzed in the scoliosis group, being lower (p<0.05) in the convex side. The values for the Homeostatic Model Assessment of Insulin Resistance indicated a resistance condition to insulin (p<0.05) in the scoliosis group (0.66 +/- 0.03), when compared to the control group (0.81 +/- 0.02). Conclusions: The scoliosis curvature remained stable 30 days after immobilization. The chemical and metabolic analyses suggest changes in muscular homeostasis during the induced scoliosis process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In silico comparison of 34 putative pks genes in Aspergillus niger strain CBS 513.88 versus A. niger strain ATCC 1015 genome revealed significant nucleotide identity (>95% covering a minimum of 99% of the gene sequence) for 31 of these genes (approximately 91%). A. niger CBS 513.88 harbors three putative pks genes (An01g01130, An11g05940, and An15g07920), for which nucleotide identity was not found in A. niger ATCC 1015. To compare the results of the in silico analysis with the in vivo situation, experimental data were obtained for a large number of A. niger strains obtained from different substrates and geographical regions. Three putative Os genes that were found to be variable between the two A. niger strains using bioinformatics tools were in fact strain-specific genes based on experimental data. The PCR amplification signals for the An01g01130, An11g05940, and An15g07920 pks genes were detected in only 97%, 71%, and 26% of the strains, respectively. Southern blot analyses confirmed the PCR data. Because one of the strain-specific pits genes (An15g07920) is located in a putative ochratoxin cluster, we focused our investigation on that region. We assessed the ochratoxin production capability of the 119 A. niger strains and found a positive association between the presence of this pia gene and the capability of the respective strain to produce ochratoxin. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent investigation of the intestine following ischemia and reperfusion (I/R) has revealed that nitric oxide synthase (NOS) neurons are more strongly affected than other neuron types. This implies that NO originating from NOS neurons contributes to neuronal damage. However, there is also evidence of the neuroprotective effects of NO. In this study, we compared the effects of I/R on the intestines of neuronal NOS knockout (nNOS(-/-)) mice and wild-type mice. I/R caused histological damage to the mucosa and muscle and infiltration of neutrophils into the external muscle layers. Damage to the mucosa and muscle was more severe and greater infiltration by neutrophils occurred in the first 24 h in nNOS(-/-) mice. Immunohistochemistry for the contractile protein, alpha-smooth muscle actin, was used to evaluate muscle damage. Smooth muscle actin occurred in the majority of smooth muscle cells in the external musculature of normal mice but was absent from most cells and was reduced in the cytoplasm of other cells following I/R. The loss was greater in nNOS(-/-) mice. Basal contractile activity of the longitudinal muscle and contractile responses to nerve stimulation or a muscarinic agonist were reduced in regions subjected to I/R and the effects were greater in nNOS(-/-) mice. Reductions in responsiveness also occurred in regions of operated mice not subjected to I/R. This is attributed to post-operative ileus that is not significantly affected by knockout of nNOS. The results indicate that deleterious effects are greater in regions subjected to I/R in mice lacking nNOS compared with normal mice, implying that NO produced by nNOS has protective effects that outweigh any damaging effect of this free radical produced by enteric neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol intake is associated with increase in blood pressure, through unknown mechanisms. We hypothesized that acute ethanol intake enhances vascular oxidative stress and induces vascular dysfunction through renin-angiotensin system (RAS) activation. Ethanol (1 g/kg; p.o. gavage) effects were assessed within 30 min in male Wistar rats. The transient decrease in blood pressure induced by ethanol was not affected by the previous administration of losartan (10 mg/kg; p.o. gavage), a selective ATI receptor antagonist. Acute ethanol intake increased plasma renin activity (PRA), angiotensin converting enzyme (ACE) activity, plasma angiotensin I (ANG I) and angiotensin II (ANG II) levels. Ethanol induced systemic and vascular oxidative stress, evidenced by increased plasma thiobarbituric acid-reacting substances (TBARS) levels, NAD(P) H oxidase-mediated vascular generation of superoxide anion and p47phox translocation (cytosol to membrane). These effects were prevented by losartan. Isolated aortas from ethanol-treated rats displayed increased p38MAPK and SAPK/JNK phosphorylation. Losartan inhibited ethanol-induced increase in the phosphorylation of these kinases. Ethanol intake decreased acetylcholine-induced relaxation and increased phenylephrine-induced contraction in endothelium-intact aortas. Ethanol significantly decreased plasma and aortic nitrate levels. These changes in vascular reactivity and in the end product of endogenous nitric oxide metabolism were not affected by losartan. Our study provides novel evidence that acute ethanol intake stimulates RAS activity and induces vascular oxidative stress and redox-signaling activation through AT(1)-dependent mechanisms. These findings highlight the importance of RAS in acute ethanol-induced oxidative damage. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Kaurenoic acid [ent-kaur-16-en-19-oic acid (1)] is a diterpene present in several plants including Sphagneticola trilobata. The only documented evidence for its antinociceptive effect is that it inhibits the writhing response induced by acetic acid in mice. Therefore, the analgesic effect of 1 in different models of pain and its mechanisms in mice were investigated further. Intraperitoneal and oral treatment with 1 dose-dependently inhibited inflammatory nociception induced by acetic acid. Oral treatment with 1 also inhibited overt nociception-like behavior induced by phenyl-p-benzoquinone, complete Freund's adjuvant (CFA), and both phases of the formalin test. Compound 1 also inhibited acute carrageenin- and PGE(2)-induced and chronic CFA-induced inflammatory mechanical hyperalgesia. Mechanistically, 1 inhibited the production of the hyperalgesic cytokines TNF-alpha and IL-1 beta. Furthermore, the analgesic effect of 1 was inhibited by L-NAME, ODQ, KT5823, and glybenclamide treatment, demonstrating that such activity also depends on activation of the NO-cyclic GMP-protein kinase G-ATP-sensitive potassium channel signaling pathway, respectively. These results demonstrate that 1 exhibits an analgesic effect in a consistent manner and that its mechanisms involve the inhibition of cytokine production and activation of the NO-cyclic GMP-protein lcinase G-ATP-sensitive potassium channel signaling pathway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The chemical ecology and biotechnological potential of metabolites from endophytic and rhizosphere fungi are receiving much attention. A collection of 17 sugarcane-derived fungi were identified and assessed by PCR for the presence of polyketide synthase (PKS) genes. The fungi were all various genera of ascomycetes, the genomes of which encoded 36 putative PKS sequences, 26 shared sequence homology with beta-ketoacyl synthase domains, while 10 sequences showed homology to known fungal C-methyltransferase domains. A neighbour-joining phylogenetic analysis of the translated sequences could group the domains into previously established chemistry-based clades that represented non-reducing, partially reducing and highly reducing fungal PKSs. We observed that, in many cases, the membership of each clade also reflected the taxonomy of the fungal isolates. The functional assignment of the domains was further confirmed by in silico secondary and tertiary protein structure predictions. This genome mining study reveals, for the first time, the genetic potential of specific taxonomic groups of sugarcane-derived fungi to produce specific types of polyketides. Future work will focus on isolating these compounds with a view to understanding their chemical ecology and likely biotechnological potential.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral mu-opioid receptor (MOR) activation are able to direct block PGE(2)-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE(2)-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated. Results: Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE(2)-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3K gamma/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3K gamma null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3K gamma (congruent to 43%). Conclusions: The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3K gamma/AKT signaling. This study extends a previously study of our group suggesting that PI3K gamma/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IgA nephropathy (IgAN), the most common primary glomerulonephritis worldwide, has significant morbidity and mortality as 20-40% of patients progress to end-stage renal disease within 20 years of onset. In order to gain insight into the molecular mechanisms involved in the progression of IgAN, we systematically evaluated renal biopsies from such patients. This showed that the MAPK/ERK signaling pathway was activated in the mesangium of patients presenting with over 1 g/day proteinuria and elevated blood pressure, but absent in biopsy specimens of patients with IgAN and modest proteinuria (<1 g/day). ERK activation was not associated with elevated galactose-deficient IgA1 or IgG specific for galactose-deficient IgA1 in the serum. In human mesangial cells in vitro, ERK activation through mesangial IgA1 receptor (CD71) controlled pro-inflammatory cytokine secretion and was induced by large-molecular-mass IgA1-containing circulating immune complexes purified from patient sera. Moreover, IgA1-dependent ERK activation required renin-angiotensin system as its blockade was efficient in reducing proteinuria in those patients exhibiting substantial mesangial activation of ERK. Thus, ERK activation alters mesangial cell-podocyte crosstalk, leading to renal dysfunction in IgAN. Assessment of MAPK/ERK activation in diagnostic renal biopsies may predict the therapeutic efficacy of renin-angiotensin system blockers in IgAN. Kidney International (2012) 82, 1284-1296; doi:10.1038/ki.2012.192; published online 5 September 2012

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Possa SS, Charafeddine HT, Righetti RF, da Silva PA, Almeida-Reis R, Saraiva-Romanholo BM, Perini A, Prado CM, Leick-Maldonado EA, Martins MA, Tiberio ID. Rho-kinase inhibition attenuates airway responsiveness, inflammation, matrix remodeling, and oxidative stress activation induced by chronic inflammation. Am J Physiol Lung Cell Mol Physiol 303: L939-L952, 2012. First published September 21, 2012; doi:10.1152/ajplung.00034.2012.-Several studies have demonstrated the importance of Rho-kinase in the modulation of smooth muscle contraction, airway hyperresponsiveness, and inflammation. However, the effects of repeated treatment with a specific inhibitor of this pathway have not been previously investigated. We evaluated the effects of repeated treatment with Y-27632, a highly selective Rho-kinase inhibitor, on airway hyperresponsiveness, oxidative stress activation, extracellular matrix remodeling, eosinophilic inflammation, and cytokine expression in an animal model of chronic airway inflammation. Guinea pigs were subjected to seven ovalbumin or saline exposures. The treatment with Y-27632 (1 mM) started at the fifth inhalation. Seventy-two hours after the seventh inhalation, the animals' pulmonary mechanics were evaluated, and exhaled nitric oxide (E-NO) was collected. The lungs were removed, and histological analysis was performed using morphometry. Treatment with Y-27632 in sensitized animals reduced E-NO concentrations, maximal responses of resistance, elastance of the respiratory system, eosinophil counts, collagen and elastic fiber contents, the numbers of cells positive for IL-2, IL-4, IL-5, IL-13, inducible nitric oxide synthase, matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1, transforming growth factor-beta, NF-kappa B, IFN-gamma, and 8-iso-prostaglandin F2 alpha contents compared with the untreated group (P < 0.05). We observed positive correlations among the functional responses and inflammation, remodeling, and oxidative stress pathway activation markers evaluated. In conclusion, Rho-kinase pathway activation contributes to the potentiation of the hyperresponsiveness, inflammation, the extracellular matrix remodeling process, and oxidative stress activation. These results suggest that Rho-kinase inhibitors represent potential pharmacological tools for the control of asthma.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite significant advances in the care of critically ill patients, acute lung injury continues to be a complex problem with high mortality. The present study was designed to characterize early lipopolysaccharide (LPS)-induced pulmonary injury and small interfering RNA targeting focal adhesion kinase (FAK) as a possible therapeutic tool in the septic lung remodeling process. Male Wistar rats were assigned into endotoxemic group and control group. Total collagen deposition was performed 8, 16, and 24 h after LPS injection. Focal adhesion kinase expression, interstitial and vascular collagen deposition, and pulmonary mechanics were analyzed at 24 h. Intravenous injection of small interfering RNA targeting FAK was used to silence expression of the kinase in pulmonary tissue. Focal adhesion kinase, total collagen deposition, and pulmonary mechanics showed increased in LPS group. Types I, III, and V collagen showed increase in pulmonary parenchyma, but only type V increased in vessels 24 h after LPS injection. Focal adhesion kinase silencing prevented lung remodeling in pulmonary parenchyma at 24 h. In conclusion, LPS induced a precocious and important lung remodeling. There was fibrotic response in the lung characterized by increased amount in total and specific-type collagen. These data may explain the frequent clinical presentation during sepsis of reduced lung compliance, oxygen diffusion, and pulmonary hypertension. The fact that FAK silencing was protective against lung collagen deposition underscores the therapeutic potential of FAK targeting by small interfering RNA.