17 resultados para General state space


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The purpose of this work was to verify the benthic macroinvertebrates community responses through environmental factors along a headwater tropical reservoir. Samplings were taken with a Van-Veen grab along the reservoir in littoral and profundal regions and in the headwater, next to the dam and the middle of the reservoir. Samples were taken during both wet and dry seasons. Dissolved oxygen concentrations, electric conductivity, temperature and pH near the sediment have been performed in situ, at every sampling station by using a multiprobe and Secchi disc. Total water phosphorus and chlorophyll a concentrations were analyzed to determine the trophic state index. Sediment's organic matter, total phosphorus, nitrogen concentrations and granulometric composition were measured. In order to verify which environmental variables would have more influence over the benthic macroinvertebrates community, a canonical correspondence analysis (CCA) was performed. The total number of recorded taxa was 28. Among them, the family Chironomidae (Diptera) was the richest group (19 taxa). It can be proposed that the benthic macroinvertebrates community may be influenced by environmental conditions such as nutrient and organic matter availability, as well as dissolved oxygen concentration. Macroinvertebrates are adequate bioindicators of water quality due to their sensibility to environmental changes mentioned before. Chironomus sp, Limnodrilus hoffmeisteri and Branchiura sowerbyi comprises a group that can be considered bio-indicators of eutrophic conditions. A second group can be considered as indicator of mesotrophic conditions. The presence of two or more members from that group which comprises Tanytarsini spp, Fissimentum sp, Pelomus sp and Goeldichironomus sp, like predominant taxa, may indicates mesotrophic conditions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In a previous paper, we connected the phenomenological noncommutative inflation of Alexander, Brandenberger and Magueijo [ Phys. Rev. D 67 081301 (2003)] and Koh and Brandenberger [ J. Cosmol. Astropart Phys. 2007 21 ()] with the formal representation theory of groups and algebras and analyzed minimal conditions that the deformed dispersion relation should satisfy in order to lead to a successful inflation. In that paper, we showed that elementary tools of algebra allow a group-like procedure in which even Hopf algebras (roughly the symmetries of noncommutative spaces) could lead to the equation of state of inflationary radiation. Nevertheless, in this paper, we show that there exists a conceptual problem with the kind of representation that leads to the fundamental equations of the model. The problem comes from an incompatibility between one of the minimal conditions for successful inflation (the momentum of individual photons being bounded from above) and the Fock-space structure of the representation which leads to the fundamental inflationary equations of state. We show that the Fock structure, although mathematically allowed, would lead to problems with the overall consistency of physics, like leading to a problematic scattering theory, for example. We suggest replacing the Fock space by one of two possible structures that we propose. One of them relates to the general theory of Hopf algebras (here explained at an elementary level) while the other is based on a representation theorem of von Neumann algebras (a generalization of the Clebsch-Gordan coefficients), a proposal already suggested by us to take into account interactions in the inflationary equation of state.