17 resultados para GENIAL Design: A System for Improving Guest Satisfaction with Hospitality Design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this present work we present a methodology that aims to apply the many-body expansion to decrease the computational cost of ab initio molecular dynamics, keeping acceptable accuracy on the results. We implemented this methodology in a program which we called ManBo. In the many-body expansion approach, we partitioned the total energy E of the system in contributions of one body, two bodies, three bodies, etc., until the contribution of the Nth body [1-3]: E = E1 + E2 + E3 + …EN. The E1 term is the sum of the internal energy of the molecules; the term E2 is the energy due to interaction between all pairs of molecules; E3 is the energy due to interaction between all trios of molecules; and so on. In Manbo we chose to truncate the expansion in the contribution of two or three bodies, both for the calculation of the energy and for the calculation of the atomic forces. In order to partially include the many-body interactions neglected when we truncate the expansion, we can include an electrostatic embedding in the electronic structure calculations, instead of considering the monomers, pairs and trios as isolated molecules in space. In simulations we made we chose to simulate water molecules, and use the Gaussian 09 as external program to calculate the atomic forces and energy of the system, as well as reference program for analyzing the accuracy of the results obtained with the ManBo. The results show that the use of the many-body expansion seems to be an interesting approach for reducing the still prohibitive computational cost of ab initio molecular dynamics. The errors introduced on atomic forces in applying such methodology are very small. The inclusion of an embedding electrostatic seems to be a good solution for improving the results with only a small increase in simulation time. As we increase the level of calculation, the simulation time of ManBo tends to largely decrease in relation to a conventional BOMD simulation of Gaussian, due to better scalability of the methodology presented. References [1] E. E. Dahlke and D. G. Truhlar; J. Chem. Theory Comput., 3, 46 (2007). [2] E. E. Dahlke and D. G. Truhlar; J. Chem. Theory Comput., 4, 1 (2008). [3] R. Rivelino, P. Chaudhuri and S. Canuto; J. Chem. Phys., 118, 10593 (2003).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hermite interpolation is increasingly showing to be a powerful numerical solution tool, as applied to different kinds of second order boundary value problems. In this work we present two Hermite finite element methods to solve viscous incompressible flows problems, in both two- and three-dimension space. In the two-dimensional case we use the Zienkiewicz triangle to represent the velocity field, and in the three-dimensional case an extension of this element to tetrahedra, still called a Zienkiewicz element. Taking as a model the Stokes system, the pressure is approximated with continuous functions, either piecewise linear or piecewise quadratic, according to the version of the Zienkiewicz element in use, that is, with either incomplete or complete cubics. The methods employ both the standard Galerkin or the Petrov–Galerkin formulation first proposed in Hughes et al. (1986) [18], based on the addition of a balance of force term. A priori error analyses point to optimal convergence rates for the PG approach, and for the Galerkin formulation too, at least in some particular cases. From the point of view of both accuracy and the global number of degrees of freedom, the new methods are shown to have a favorable cost-benefit ratio, as compared to velocity Lagrange finite elements of the same order, especially if the Galerkin approach is employed.