21 resultados para Freezing tolerance


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abscisic acid (ABA) is an important regulator of plant responses to environmental stresses and an absolute requirement for stress tolerance. Recently, a third phytoene synthase (PSY3) gene paralog was identified in monocots and demonstrated to play a specialized role in stress-induced ABA formation, thus suggesting that the first committed step in carotenogenesis is a key limiting step in ABA biosynthesis. To examine whether the ectopic expression of PSY, other than PSY3, would similarly affect ABA level and stress tolerance, we have produced transgenic tobacco containing a fruit-specific PSY (CpPSY) of grapefruit (Citrus paradisi Macf.). The transgenic plants contained a single- or double-locus insertion and expressed CpPSY at varying transcript levels. In comparison with the wild-type plants, the CpPSY expressing transgenic plants showed a significant increase on root length and shoot biomass under PEG-, NaCl- and mannitol-induced osmotic stress. The enhanced stress tolerance of transgenic plants was correlated with the increased endogenous ABA level and expression of stress-responsive genes, which in turn was correlated with the CpPSY copy number and expression level in different transgenic lines. Collectively, these results provide further evidence that PSY is a key enzyme regulating ABA biosynthesis and that the altered expression of other PSYs in transgenic plants may provide a similar function to that of the monocot's PSY3 in ABA biosynthesis and stress tolerance. The results also pave the way for further use of CpPSY, as well as other PSYs, as potential candidate genes for engineering tolerance to drought and salt stress in crop plants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The success of semen cryopreservation is influenced by several factors, such as freezing curves and cryoprotectants. These two factors are of special interest once they may lead to many important physical-chemical changes resulting in different degrees of damage in spermatozoa structure. This experiment was designed to compare the effect of bull semen cryopreservation using two freezing techniques: conventional (CT cooling rate of -0.55 degrees C min-1 and freezing rate of -19.1 degrees C min-1) and automated (AT cooling rate of -0.23 degrees C min-1 and freezing rate of -15 degrees C min-1), performed with different curves, and with three cryoprotectants (glycerol, ethylene glycol and dimethyl formamide) on bovine sperm motility and integrity of plasma, acrosomal and mitochondrial membranes. These variables were simultaneously evaluated using the fluorescence probes propidium iodide, fluorescein-conjugated Pisum sativum agglutinin and MitoTracker Green FM. The effects of freezing techniques, as well as of different cryoprotectants were analysed by the analysis of variance. The means were compared by Fishers test. There were no significant differences between freezing techniques (P > 0.05). Glycerol showed higher percentages of motility, vigour and integrity of plasma, acrosomal and mitochondrial membranes than other two cryoprotectants (P < 0.05). Ethylene glycol preserved higher motility and integrity of plasma and mitochondrial membranes than dimethyl formamide (P < 0.05). Sperm motility with glycerol was 30.67 +/- 1.41% and 30.50 +/- 1.06%, with ethylene glycol was 21.17 +/- 1.66% and 21.67 +/- 1.13% and with dimethyl formamide was 8.33 +/- 0.65% and 9.17 +/- 0.72% to CT and AT curves, respectively. The percentage of spermatozoa with simultaneously intact plasma membrane, intact acrosome and mitochondrial function (IPIAH) was 14.82 +/- 1.49% (CT) and 15.83 +/- 1.26% (AT) to glycerol, 9.20 +/- 1.31% (CT) and 9.92 +/- 1.29% (AT) to ethylene glycol 4.65 +/- 0.93% (CT) and 5.17 +/- 0.87% (AT) to dimethyl formamide. Glycerol provided the best results, although nearly 85% of spermatozoa showed some degree of injury in their membranes, suggesting that further studies are required to improve the results of cryopreservation of bovine semen.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some organ-transplanted patients achieve a state of "operational tolerance" (01) in which graft function is maintained after the complete withdrawal of immunosuppressive drugs. We used a gene panel of regulatory/inflammatory molecules (FOXP3, GATA3, 100, TGFB1, TGFBR1/TBX21, TNF and IFNG) to investigate the gene expression profile in peripheral blood mononuclear cells of renal-transplanted individuals experiencing OT compared to transplanted individuals not displaying OT and healthy individuals (HI). OT subjects showed a predominant regulatory (REG) profile with higher gene expression of GATA3, FOXP3, TGFB1 and TGFB receptor 1 compared to the other groups. This predominant REG gene expression profile displayed stability over time. The significant GATA3 gene and protein expressions in OT individuals suggest that a Th2 deviation may be a relevant pathway to OT. Moreover, the capacity of the REG/INFLAMMA gene panel to discriminate OT by peripheral blood analysis indicates that this state has systemic repercussions. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cells of Candida guilliermondii (ATCC 201935) were permeabilised with surfactant treatment (CTAB or Triton X-100) or a freezing-thawing procedure. Treatments were monitored by in situ activities of the key enzymes involved in xylose metabolism, that is, glucose-6-phosphate dehydrogenase (G6PD), xylose reductase (XR) and xylitol dehydrogenase (XD). The permeabilising ability of the surfactants was dependent on its concentration and incubation time. The optimum operation conditions for the permeabilisation of C. guilliermondii with surfactants were 0.41 mM (CTAB) or 2.78 mM (Triton X-100), 30 degrees C, and pH 7 at 200 rpm for 50 min. The maximum permeabilisation measured in terms of the in situ G6PD activity observed was, in order, as follows: CTAB (122.4 +/- 15.7 U/g(cells)) > freezing-thawing, , (54.3 +/- 1.9 U/g(cells)) > Triton X-100 (23.5 +/- 0.0 U/g(cells)). These results suggest that CTAB surfactant is more effective in the permeabilisation of C. guilliermondii cells in comparison to the freezing-thawing and Triton X-100 treatments. Nevertheless, freezing-thawing was the only treatment that allowed measurable in situ XR activity. Therefore, freezing-thawing permeabilised yeast cells could be used as a source of xylose reductase for analytical purposes or for use in biotransformation process such as xylitol preparation from xylose. The level of in situ xylose reductase was found to be 13.2 +/- 0.1 U/g(cells).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Thyroid hormone induces cardiac hypertrophy and preconditions the myocardium against Ischemia/Reperfusion (I/R) injury. Type 2 Angiotensin II receptors (AT2R) are shown to be upregulated in cardiac hypertrophy observed in hyperthyroidism and this receptor has been reported to mediate cardioprotection against ischemic injury. Methods The aim of the present study was to evaluate the role of AT2R in the recovery of myocardium after I/R in isolated hearts from T3 treated rats. MaleWistar rats were treated with triiodothyronine (T3; 7 μg/100 gBW/day, i.p.) in the presence or not of a specific AT2R blocker (PD123,319; 10 mg/Kg) for 14 days, while normal rats served as control. After treatment, isolated hearts were perfused in Langendorff mode; after 30 min of stabilization, hearts were subjected to 20 min of zero-flow global ischemia followed by 25 min, 35 min and 45 min of reperfusion. Results T3 treatment induced cardiac hypertrophy, which was not changed by PD treatment. Post-ischemic recovery of cardiac function was increased in T3-treated hearts after 35 min and 45 min of reperfusion as compared to control and the ischemic contracture was accelerated and intensified. AT2R blockade was able to return the evaluated functional parameters of cardiac performance (LVDP, +dP/dtmáx and −dP/dtmin) to the control condition. Furthermore, AT2R blockade prevented the increase in AMPK expression levels induced by T3, suggesting its possible involvement in this process. Conclusion AT2R plays a significant role in T3-induced cardioprotection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento da Pesquisa (National Council of Research Development) - 476148/2010-3