19 resultados para Expert systems (Computer science)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fraud is a global problem that has required more attention due to an accentuated expansion of modern technology and communication. When statistical techniques are used to detect fraud, whether a fraud detection model is accurate enough in order to provide correct classification of the case as a fraudulent or legitimate is a critical factor. In this context, the concept of bootstrap aggregating (bagging) arises. The basic idea is to generate multiple classifiers by obtaining the predicted values from the adjusted models to several replicated datasets and then combining them into a single predictive classification in order to improve the classification accuracy. In this paper, for the first time, we aim to present a pioneer study of the performance of the discrete and continuous k-dependence probabilistic networks within the context of bagging predictors classification. Via a large simulation study and various real datasets, we discovered that the probabilistic networks are a strong modeling option with high predictive capacity and with a high increment using the bagging procedure when compared to traditional techniques. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In multi-label classification, examples can be associated with multiple labels simultaneously. The task of learning from multi-label data can be addressed by methods that transform the multi-label classification problem into several single-label classification problems. The binary relevance approach is one of these methods, where the multi-label learning task is decomposed into several independent binary classification problems, one for each label in the set of labels, and the final labels for each example are determined by aggregating the predictions from all binary classifiers. However, this approach fails to consider any dependency among the labels. Aiming to accurately predict label combinations, in this paper we propose a simple approach that enables the binary classifiers to discover existing label dependency by themselves. An experimental study using decision trees, a kernel method as well as Naive Bayes as base-learning techniques shows the potential of the proposed approach to improve the multi-label classification performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical methods have been widely employed to assess the capabilities of credit scoring classification models in order to reduce the risk of wrong decisions when granting credit facilities to clients. The predictive quality of a classification model can be evaluated based on measures such as sensitivity, specificity, predictive values, accuracy, correlation coefficients and information theoretical measures, such as relative entropy and mutual information. In this paper we analyze the performance of a naive logistic regression model (Hosmer & Lemeshow, 1989) and a logistic regression with state-dependent sample selection model (Cramer, 2004) applied to simulated data. Also, as a case study, the methodology is illustrated on a data set extracted from a Brazilian bank portfolio. Our simulation results so far revealed that there is no statistically significant difference in terms of predictive capacity between the naive logistic regression models and the logistic regression with state-dependent sample selection models. However, there is strong difference between the distributions of the estimated default probabilities from these two statistical modeling techniques, with the naive logistic regression models always underestimating such probabilities, particularly in the presence of balanced samples. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The complexity of power systems has increased in recent years due to the operation of existing transmission lines closer to their limits, using flexible AC transmission system (FACTS) devices, and also due to the increased penetration of new types of generators that have more intermittent characteristics and lower inertial response, such as wind generators. This changing nature of a power system has considerable effect on its dynamic behaviors resulting in power swings, dynamic interactions between different power system devices, and less synchronized coupling. This paper presents some analyses of this changing nature of power systems and their dynamic behaviors to identify critical issues that limit the large-scale integration of wind generators and FACTS devices. In addition, this paper addresses some general concerns toward high compensations in different grid topologies. The studies in this paper are conducted on the New England and New York power system model under both small and large disturbances. From the analyses, it can be concluded that high compensation can reduce the security limits under certain operating conditions, and the modes related to operating slip and shaft stiffness are critical as they may limit the large-scale integration of wind generation.