66 resultados para Evolutionary biology
Resumo:
Much effort has been devoted to understanding the function of extrafloral nectaries (EFNs) for antplantherbivore interactions. However, the pattern of evolution of such structures throughout the history of plant lineages remains unexplored. In this study, we used empirical knowledge on plant defences mediated by ants as a theoretical framework to test specific hypotheses about the adaptive role of EFNs during plant evolution. Emphasis was given to different processes (neutral or adaptive) and factors (habitat change and trade-offs with new trichomes) that may have affected the evolution of antplant associations. We measured seven EFN quantitative traits in all 105 species included in a well-supported phylogeny of the tribe Bignonieae (Bignoniaceae) and collected field data on antEFN interactions in 32 species. We identified a positive association between ant visitation (a surrogate of ant guarding) and the abundance of EFNs in vegetative plant parts and rejected the hypothesis of phylogenetic conservatism of EFNs, with most traits presenting K-values < 1. Modelling the evolution of EFN traits using maximum likelihood approaches further suggested adaptive evolution, with static-optimum models showing a better fit than purely drift models. In addition, the abundance of EFNs was associated with habitat shifts (with a decrease in the abundance of EFNs from forest to savannas), and a potential trade-off was detected between the abundance of EFNs and estipitate glandular trichomes (i.e. trichomes with sticky secretion). These evolutionary associations suggest divergent selection between species as well as explains K-values < 1. Experimental studies with multiple lineages of forest and savanna taxa may improve our understanding of the role of nectaries in plants. Overall, our results suggest that the evolution of EFNs was likely associated with the adaptive process which probably played an important role in the diversification of this plant group.
Resumo:
The gecko genus Phyllopezus occurs across South America's open biomes: Cerrado, Seasonally Dry Tropical Forests (SDTF, including Caatinga), and Chaco. We generated a multi-gene dataset and estimated phylogenetic relationships among described Phyllopezus taxa and related species. We included exemplars from both described Phyllopezus pollicaris subspecies, P. p. pollicaris and P. p. przewalskii. Phylogenies from the concatenated data as well as species trees constructed from individual gene trees were largely congruent. All phylogeny reconstruction methods showed Bogertia lutzae as the sister species of Phyllopezus maranjonensis, rendering Phyllopezus paraphyletic. We synonymized the monotypic genus Bogertia with Phyllopezus to maintain a taxonomy that is isomorphic with phylogenetic history. We recovered multiple, deeply divergent, cryptic lineages within P. pollicaris. These cryptic lineages possessed mtDNA distances equivalent to distances among other gekkotan sister taxa. Described P. pollicaris subspecies are not reciprocally monophyletic and current subspecific taxonomy does not accurately reflect evolutionary relationships among cryptic lineages. We highlight the conservation significance of these results in light of the ongoing habitat loss in South America's open biomes. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The genus Orobothriurus Maury, 1976 (Bothriuridae Simon, 1880) displays an Andean pattern of distribution, most of its species occurring at high altitudes (over 2000-2500 m to a maximum altitude record of 4910 m) from central Peru to Argentina. The recent discovery of several new species and the uncertain phylogenetic position of Orobothriurus lourencoi Ojanguren Affilastro, 2003, required a reanalysis of Orobothriurus phylogeny. Thirty bothriurid taxa, including all species of Orobothriurus and Pachakutej Ochoa, 2004, were scored for 65 morphological characters and analysed with parsimony under equal and implied weighting. The resulting topology justifies the establishment of a new genus, Rumikiru Ojanguren Affilastro et al., in press, for O. lourencoi and a closely related, new species, Rumikiru atacama Ojanguren Affilastro et al., in press. It also offers new insights about the phylogeny and biogeography of Orobothriurus and related genera. Characters from the male genitalia (i.e. hemispermatophore), comprising approximately 26% of the morphological matrix, were found to be less homoplastic than those from somatic morphology, contradicting suggestions that genitalia are uninformative or potentially misleading in phylogenetic studies.
Resumo:
The rock-wallaby genus Petrogale comprises a group of habitat-specialist macropodids endemic to Australia. Their restriction to rocky outcrops, with infrequent interpopulation dispersal, has been suggested as the cause of their recent and rapid diversification. Molecular phylogenetic relationships within and among species of Petrogale were analysed using mitochondrial (cytochrome oxidase c subunit 1, cytochrome b. NADH dehydrogenase subunit 2) and nuclear (omega-globin intron, breast and ovarian cancer susceptibility gene) sequence data with representatives that encompassed the morphological and chromosomal variation within the genus, including for the first time both Petrogale concinna and Petrogale purpureicollis. Four distinct lineages were identified, (1) the brachyotis group, (2) Petrogale persephone, (3) Petrogale xanthopus and (4) the lateralis-penicillata group. Three of these lineages include taxa with the ancestral karyotype (2n = 22). Paraphyletic relationships within the brachyotis group indicate the need for a focused phylogeographic study. There was support for P. purpureicollis being reinstated as a full species and P. concinna being placed within Petrogale rather than in the monotypic genus Peradorcas. Bayesian analyses of divergence times suggest that episodes of diversification commenced in the late Miocene-Pliocene and continued throughout the Pleistocene. Ancestral state reconstructions suggest that Petrogale originated in a mesic environment and dispersed into more arid environments, events that correlate with the timing of radiations in other arid zone vertebrate taxa across Australia. Crown Copyright (C) 2011 Published by Elsevier Inc. All rights reserved.
Resumo:
Background: Xenarthra (sloths, armadillos and anteaters) represent one of four currently recognized Eutherian mammal supraorders. Some phylogenomic studies point to the possibility of Xenarthra being at the base of the Eutherian tree, together or not with the supraorder Afrotheria. We performed painting with human autosomes and X-chromosome specific probes on metaphases of two three-toed sloths: Bradypus torquatus and B. variegatus. These species represent the fourth of the five extant Xenarthra families to be studied with this approach. Results: Eleven human chromosomes were conserved as one block in both B. torquatus and B. variegatus: (HSA 5, 6, 9, 11, 13, 14, 15, 17, 18, 20, 21 and the X chromosome). B. torquatus, three additional human chromosomes were conserved intact (HSA 1, 3 and 4). The remaining human chromosomes were represented by two or three segments on each sloth. Seven associations between human chromosomes were detected in the karyotypes of both B. torquatus and B. variegatus: HSA 3/21, 4/8, 7/10, 7/16, 12/22, 14/15 and 17/19. The ancestral Eutherian association 16/19 was not detected in the Bradypus species. Conclusions: Our results together with previous reports enabled us to propose a hypothetical ancestral Xenarthran karyotype with 48 chromosomes that would differ from the proposed ancestral Eutherian karyotype by the presence of the association HSA 7/10 and by the split of HSA 8 into three blocks, instead of the two found in the Eutherian ancestor. These same chromosome features point to the monophyly of Xenarthra, making this the second supraorder of placental mammals to have a chromosome signature supporting its monophyly.
Resumo:
Dactylotrochus cervicornis (= Tridacophyllia cervicornis Moseley, 1881), which occurs in Indo-Pacific waters between 73 and 852 m, was originally described as an astraeid but was later transferred to the Caryophylliidae. Assumed to be solitary, this species has no stolons and only one elongated fossa, and is unique among azooxanthellate scleractinians in often displaying extremely long thecal extensions that are septate and digitiform. Based on both molecular phylogenetic analyses (partial mitochondrial CO1 and 16S rDNA, and partial nuclear 28S rDNA) and morphological characteristics, we propose the transfer of D. cervicornis from the Caryophylliidae to the Agariciidae, making it the first extant representative of the latter family that is solitary and from deep water (azooxanthellate). The basal position of D. cervicornis within the agariciids implied by our analyses strengthens the case for inclusion of fossil species that were solitary, such as Trochoseris, in this family and suggests that the ancestor of this scleractinian family, extant members of which are predominantly colonial and zooxanthellate, may have been solitary and azooxanthellate.
Resumo:
Many hypotheses have been proposed to explain high species diversity in Amazonia, but few generalizations have emerged. In part, this has arisen from the scarcity of rigorous tests for mechanisms promoting speciation, and from major uncertainties about palaeogeographic events and their spatial and temporal associations with diversification. Here, we investigate the environmental history of Amazonia using a phylogenetic and biogeographic analysis of trumpeters (Aves: Psophia), which are represented by species in each of the vertebrate areas of endemism. Their relationships reveal an unforeseen 'complete' time-slice of Amazonian diversification over the past 3.0 Myr. We employ this temporally calibrated phylogeny to test competing palaeogeographic hypotheses. Our results are consistent with the establishment of the current Amazonian drainage system at approximately 3.0-2.0 Ma and predict the temporal pattern of major river formation over Plio-Pleistocene times. We propose a palaeobiogeographic model for the last 3.0 Myr of Amazonian history that has implications for understanding patterns of endemism, the temporal history of Amazonian diversification and mechanisms promoting speciation. The history of Psophia, in combination with new geological evidence, provides the strongest direct evidence supporting a role for river dynamics in Amazonian diversification, and the absence of such a role for glacial climate cycles and refugia.
Resumo:
We present a phylogenetic analysis of the New World dipsadids based on an expanded data matrix that includes 246 terminal taxa including 196 dipsadids. The species are sampled for eight genes (12S, 16S, cytb, nd2, nd4, bdnf, c-mos, rag2). The data are explored using two distinct optimality proceduresmaximum parsimony and maximum likelihoodand two alignment strategiesdynamic homology and static homology. Two previously unsampled dipsadid genera, Sordellina and Rhachidelus, are now included in the analysis. The definitions of the genera, Erythrolamprus, Clelia, Hypsirhynchus, Philodryas and Phimophis, and the tribes Alsophiini, Echinantherini and Conophiini, are revised. In order to maintain monophyly, the genus Umbrivaga is synonymized with Erythrolamprus, and two new genera are erected to accommodate Phimophis iglesiasi and Clelia rustica, as well as their closely related species. The West Indian genera Schwartzophis, Darlingtonia, Antillophis and Ocyophis are resurrected. (c) The Willi Hennig Society 2012.
Resumo:
The identification of northern and southern components in different vertebrate species led researchers to accept a two-component hypothesis for the Brazilian Atlantic forest (BAF). Nevertheless, neither a formal proposal nor a meta-analysis to confirm this coincidence was ever made. Our main objective here was therefore to systematically test in how many vertebrate components the BAF could be divided by analysing existing empirical data. We used two approaches: (1) mapping and comparing the proposed areas of vertebrate endemism in the BAF and (2) analysing studies mentioning spatial subdivisions in distinct forest-dependent vertebrates within the biome, by the use of panbiogeography. The four large-scale endemism area components together with the six small-scale panbiogeographical ones allowed the definition of three BAF greater regions, subdivided into nine vertebrate components, latitudinally and longitudinally organized. Empirical time estimates of the diversification events within the BAF were also reviewed. Diversification of these vertebrates occurred not only in the Pleistocene but also throughout the Miocene. Our results confirm the BAF's complex history, both in space and time. We propose that future research should be small-scale and focused in the vertebrate components identified herein. Given the BAF's heterogeneity, studying via sections will be much more useful in identifying the BAF's historical biogeography. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 107, 39-55.
Resumo:
The evolution of elongated body shapes in vertebrates has intrigued biologists for decades and is particularly recurrent among squamates. Several aspects might explain how the environment influences the evolution of body elongation, but climate needs to be incorporated in this scenario to evaluate how it contributes to morphological evolution. Climatic parameters include temperature and precipitation, two variables that likely influence environmental characteristics, including soil texture and substrate coverage, which may define the selective pressures acting during the evolution of morphology. Due to development of geographic information system (GIS) techniques, these variables can now be included in evolutionary biology studies and were used in the present study to test for associations between variation in body shape and climate in the tropical lizard family Gymnophthalmidae. We first investigated how the morphological traits that define body shape are correlated in these lizards and then tested for associations between a descriptor of body elongation and climate. Our analyses revealed that the evolution of body elongation in Gymnophthalmidae involved concomitant changes in different morphological traits: trunk elongation was coupled with limb shortening and a reduction in body diameter, and the gradual variation along this axis was illustrated by less-elongated morphologies exhibiting shorter trunks and longer limbs. The variation identified in Gymnophthalmidae body shape was associated with climate, with the species from more arid environments usually being more elongated. Aridity is associated with high temperatures and low precipitation, which affect additional environmental features, including the habitat structure. This feature may influence the evolution of body shape because contrasting environments likely impose distinct demands for organismal performance in several activities, such as locomotion and thermoregulation. The present study establishes a connection between morphology and a broader natural component, climate, and introduces new questions about the spatial distribution of morphological variation among squamates.
Resumo:
Mutualisms such as the figfig wasp mutualism are generally exploited by parasites. We demonstrate that amongst nonpollinating fig wasps (NPFWs) parasitic on Ficus citrifolia, a species of Idarnes galls flowers and another species feeds on galls induced by other wasps killing their larvae. The galling wasp inserts its ovipositor through the fig wall into the fig cavity. The ovipositor then follows a sinuous path and is introduced through the stigma and style of the flower. The egg is deposited between the integument and nucellus, in the exact location where the pollinating mutualistic wasp would have laid its egg. Gall induction is a complex process. In contrast, the path followed by the ovipositor of the other species is straightforward: attacking a larva within a developed gall poses different constraints. Shifts in feeding regime have occurred repeatedly in NPFWs. Monitoring traits associated with such repeated evolutionary shifts may help understand underlying functional constraints. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106, 114122.
Resumo:
In the present study, mitochondrial (mt)DNA sequence data were used to examine the genetic structure of fire-eye antbirds (genus Pyriglena) along the Atlantic Forest and the predictions derived from the river hypothesis and from a Last Glacial Maximum Pleistocene refuge paleomodel were compared to explain the patterns of genetic variation observed in these populations. A total of 266 individuals from 45 populations were sampled over a latitudinal transect and a number of phylogeographical and population genetics analytical approaches were employed to address these questions. The pattern of mtDNA variation observed in fire-eye antbirds provides little support for the view that populations were isolated by the modern course of major Atlantic Forest rivers. Instead, the data provide stronger support for the predictions of the refuge model. These results add to the mounting evidence that climatic oscillations appear to have played a substantial role in shaping the phylogeographical structure and possibly the diversification of many taxa in this region. However, the results also illustrate the potential for more complex climatic history and historical changes in the geographical distribution of Atlantic Forest than envisioned by the refuge model. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 105, 900824.
Resumo:
As one of the few areas apt for horticulture in Northern Chile's arid landscape, the prehistory of the Atacama oases is deeply enmeshed with that of the inter-regional networks that promoted societal development in the south central Andes. During the Middle Horizon (AD 5001000), local populations experienced a cultural apex associated with a substantial increase in inter-regional interaction, population density, and quantity and quality of mortuary assemblages. Here, we test if this cultural peak affected dietary practices equally among the distinct local groups of this period. We examine caries prevalence and the degree of occlusal wear in four series recovered from three cemeteries. Our results show a reduction in the prevalence of caries for males among an elite subsample from Solcor 3 and the later Coyo 3 cemeteries. Dental wear tends to increase over time with the Late Middle Horizon/Late Intermediate Period cemetery of Quitor 6 showing a higher average degree of wear. When considered in concert with archaeological information, we concluded that the Middle Horizon was marked by dietary variability wherein some populations were able to obtain better access to protein sources (e.g., camelid meat). Not all members of Atacameno society benefited from this, as we note that this dietary change only affected men. Our results suggest that the benefits brought to the San Pedro oases during the Middle Horizon were not equally distributed among local groups and that social status, relationship to the Tiwanaku polity, and interment in particular cemeteries affected dietary composition. Am J Phys Anthropol, 2012. (C) 2012 Wiley Periodicals, Inc.
Resumo:
A recent review of the homology concept in cladistics is critiqued in light of the historical literature. Homology as a notion relevant to the recognition of clades remains equivalent to synapomorphy. Some symplesiomorphies are homologies inasmuch as they represent synapomorphies of more inclusive taxa; others are complementary character states that do not imply any shared evolutionary history among the taxa that exhibit the state. Undirected character-state change (as characters optimized on an unrooted tree) is a necessary but not sufficient test of homology, because the addition of a root may alter parsimonious reconstructions. Primary and secondary homology are defended as realistic representations of discovery procedures in comparative biology, recognizable even in Direct Optimization. The epistemological relationship between homology as evidence and common ancestry as explanation is again emphasized. An alternative definition of homology is proposed. (c) The Willi Hennig Society 2012.
Resumo:
Invasive species are known to affect native species in a variety of ways, but the effect of acoustic invaders has not been examined previously. We simulated an invasion of the acoustic niche by exposing calling native male white-banded tree frogs (Hypsiboas albomarginatus) to recorded invasive American bullfrog (Lithobates catesbeianus) calls. In response, tree frogs immediately shifted calls to significantly higher frequencies. In the post-stimulus period, they continued to use higher frequencies while also decreasing signal duration. Acoustic signals are the primary basis of mate selection in many anurans, suggesting that such changes could negatively affect the reproductive success of native species. The effects of bullfrog vocalizations on acoustic communities are expected to be especially severe due to their broad frequency band, which masks the calls of multiple species simultaneously.