22 resultados para Eucalyptus canker


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Citrus canker is a disease that has severe economic impact on the citrus industry worldwide. There are three types of canker, called A, B, and C. The three types have different phenotypes and affect different citrus species. The causative agent for type A is Xanthomonas citri subsp. citri, whose genome sequence was made available in 2002. Xanthomonas fuscans subsp. aurantifolii strain B causes canker B and Xanthomonas fuscans subsp. aurantifolii strain C causes canker C. Results We have sequenced the genomes of strains B and C to draft status. We have compared their genomic content to X. citri subsp. citri and to other Xanthomonas genomes, with special emphasis on type III secreted effector repertoires. In addition to pthA, already known to be present in all three citrus canker strains, two additional effector genes, xopE3 and xopAI, are also present in all three strains and are both located on the same putative genomic island. These two effector genes, along with one other effector-like gene in the same region, are thus good candidates for being pathogenicity factors on citrus. Numerous gene content differences also exist between the three cankers strains, which can be correlated with their different virulence and host range. Particular attention was placed on the analysis of genes involved in biofilm formation and quorum sensing, type IV secretion, flagellum synthesis and motility, lipopolysacharide synthesis, and on the gene xacPNP, which codes for a natriuretic protein. Conclusion We have uncovered numerous commonalities and differences in gene content between the genomes of the pathogenic agents causing citrus canker A, B, and C and other Xanthomonas genomes. Molecular genetics can now be employed to determine the role of these genes in plant-microbe interactions. The gained knowledge will be instrumental for improving citrus canker control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Financial support. Brazilian Ministry of Science and Technology (CNPq Grant 577047-2008-6), FAP-DF NEXTREE Grant 193.000.570/2009 and EMBRAPA Macroprogram 2 project grant 02.07.01.004.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background In recent years, the growing demand for biofuels has encouraged the search for different sources of underutilized lignocellulosic feedstocks that are available in sufficient abundance to be used for sustainable biofuel production. Much attention has been focused on biomass from grass. However, large amounts of timber residues such as eucalyptus bark are available and represent a potential source for conversion to bioethanol. In the present paper, we investigate the effects of a delignification process with increasing sodium hydroxide concentrations, preceded or not by diluted acid, on the bark of two eucalyptus clones: Eucalyptus grandis (EG) and the hybrid, E. grandis x urophylla (HGU). The enzymatic digestibility and total cellulose conversion were measured, along with the effect on the composition of the solid and the liquor fractions. Barks were also assessed using Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), X-Ray diffraction, and scanning electron microscopy (SEM). Results Compositional analysis revealed an increase in the cellulose content, reaching around 81% and 76% of glucose for HGU and EG, respectively, using a two-step treatment with HCl 1%, followed by 4% NaOH. Lignin removal was 84% (HGU) and 79% (EG), while the hemicellulose removal was 95% and 97% for HGU and EG, respectively. However, when we applied a one-step treatment, with 4% NaOH, higher hydrolysis efficiencies were found after 48 h for both clones, reaching almost 100% for HGU and 80% for EG, in spite of the lower lignin and hemicellulose removal. Total cellulose conversion increased from 5% and 7% to around 65% for HGU and 59% for EG. NMR and FTIR provided important insight into the lignin and hemicellulose removal and SEM studies shed light on the cell-wall unstructuring after pretreatment and lignin migration and precipitation on the fibers surface, which explain the different hydrolysis rates found for the clones. Conclusion Our results show that the single step alkaline pretreatment improves the enzymatic digestibility of Eucalyptus bark. Furthermore, the chemical and physical methods combined in this study provide a better comprehension of the pretreatment effects on cell-wall and the factors that influence enzymatic digestibility of this forest residue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O conhecimento das variações das características da madeira produzida pelas árvores de eucalipto em função da idade e posição no tronco é fundamental para o seu uso adequado. O presente trabalho teve como objetivo avaliar a influência da idade e das posições longitudinal na densidade básica e radial nas características anatômicas do lenho das árvores de Eucalyptus grandis plantadas no espaçamento 3x2 m e fertilizadas com adubação comercial no plantio, 6º, 12° mês. Foram selecionadas, de acordo com a distribuição de área basal, quinze árvores de eucalipto com 24, 36 e 72 meses de idade, sendo 5 árvores/idade, e cortados discos do lenho a 1,30 m da altura do solo (DAP) para as determinações das dimensões das fibras (comprimento, espessura da parede, diâmetro do lume e largura total) e vasos (diâmetro tangencial, frequência e área ocupada) e em diferentes alturas fixas do tronco para a determinação da densidade básica. A densidade básica do lenho aumentou de 0,43 g.cm-3 para 0,46 g.cm-3 com o avanço da idade das árvores, apresentando um modelo de variação longitudinal, comum as três idades, caracterizado pelo decréscimo da base-3m (0,42-0,49 g.cm-3 0,40-0,46 g.cm-3) e posterior aumento até a extremidade (0,46 g.cm-3 0,54 g.cm-3) do tronco. As dimensões das fibras e dos vasos apresentaram variações tanto em relação à idade quanto no sentido medula-casca. O comportamento e as variações das características do lenho das árvores de eucalipto indicam que o meristema cambial está formando, até este período, o lenho denominado de juvenil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermal treatment (thermal rectification) is a process in which technological properties of wood are modified using thermal energy, the result of which is often value-added wood. Thermally treated wood takes on similar color shades to tropical woods and offers considerable resistance to destructive microorganisms and climate action, in addition to having high dimensional stability and low hygroscopicity. Wood samples of Eucalyptus grandis were subjected to various thermal treatments, as performed in presence (140ºC; 160ºC; 180ºC) or in absence of oxygen (160ºC; 180ºC; 200ºC) inside a thermal treatment chamber, and then studied as to their chemical characteristics. Increasing the maximum treatment temperatures led to a reduction in the holocellulose content of samples as a result of the degradation and volatilization of hemicelluloses, also leading to an increase in the relative lignin content. Except for glucose, all monosaccharide levels were found to decrease in samples after the thermal treatment at a maximum temperature of 200ºC. The thermal treatment above 160ºC led to increased levels of total extractives in the wood samples, probably ascribed to the emergence of low molecular weight substances as a result of thermal degradation. Overall, it was not possible to clearly determine the effect of presence or absence of oxygen in the air during thermal treatment on the chemical characteristics of the relevant wood samples.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The in vitro organogenesis of woody species plays an essential role in the improvement of forest products by providing saplings with high commercial value. Furthermore, mineral nutrition plays an important role in the induction of organogenic responses. The objective of this study was to evaluate the effects of boron and calcium in the organogenesis of nodal segments from seedlings of Eucalyptus grandis growing under in vitro conditions. The concentration of boron and calcium in MS medium was modified to induce organogenic responses in 45-day-old nodal segments used as explants. After 60 days, the fresh weight, dry weight, ratio of fresh and dry weight, relative water content and relative matter content accumulated by the explants were evaluated. The concentrations of boron and calcium in the culture medium influenced the in vitro organogenic control of Eucalyptus grandis. Reduced combinations of boron and calcium induced callus formation and dry matter accumulation in the explants. A boron concentration of 100% (1.10 mg L-1) combined with 100% (119.950 mg L-1) and 200% (239.900 mg L-1) of calcium, and 200% (2.20 mg L-1) of boron combined with 100% (119.950 mg L-1) of calcium allowed the induction of well-developed buds, which can be used for the regeneration of micro-plants.