21 resultados para Environmental Sciences related to Agriculture and Land-use
Resumo:
We studied the eutrophication history of a tropical shallow reservoir in the So Paulo metropolitan region, southeast Brazil. We analyzed grain size, geochemistry, diatom assemblages, and land-use records in a sediment core from the reservoir to infer its trophic state history during the last similar to 110 years (1894-2005). Eighty diatom species were observed in the core and shifts in the relative abundances of planktonic and benthic taxa indicate major limnological changes associated with complex interactions between hydrologic factors and eutrophication. Discostella stelligera was associated with deforestation and water physical changes whereas Aulacoseira granulata, a species abundant throughout the core, was mostly associated with high flux conditions and erosion events, regardless of trophic state. Eutrophication was triggered by construction of the city zoo (1958) and installation of the So Paulo State Department of Agriculture (1975) within the Gar double dagger as watershed, and increasing loads of untreated sewage from these institutions. The data suggest that deterioration in water quality began after similar to 1975 and markedly accelerated after similar to 1990. The reservoir has been hypereutrophic since 1999. Steady increases in geochemical proxies for trophic state, along with a decrease in C/N ratios, indicated higher nutrient concentrations and the prevalence of autochthonous production towards the core top. Appearance of Achnanthidium catenatum similar to 1993 highlighted the onset of a marked eutrophication phase. The subsequent dominance of Planothidium rostratum and Cyclotella meneghiniana suggested a sharp shift to a hypereutrophic state since 1999. Land-use history proved valuable for validating the chronology and interpreting anthropogenic impacts. Multi-proxy analysis of the sediment record provided an effective tool for tracking ecological shifts in the reservoir ecosystem. This study provides the first reconstruction of lake eutrophication history in Brazil and highlights the importance of hydrological/physical changes as drivers of diatom assemblage shifts in reservoirs, which may confound trophic state inferences based on shifts in the planktonic/benthic diatom ratio.
Resumo:
Detailed environmental land characterization is essential for technical and financial planning, for both the scientific point of view and technological application. This work aimed at the physiographic and pedological characterization and eucalyptus productivity mapping at Itatinga Forest Sciences Experimental Station (southeastern Brazil), using geographic information systems in order to identify possible cause-effect relationships between forest productivity and soil attributes. The digital cartographic dataset was structured as follows: as primary source of data, aerial photograph and field survey were used and, as a secondary source, topographical, geological and land use occupation maps were used. For mapping wood productivity at age six (MAI6, Mean Annual Increment), inventory data of permanent plots (same species, provenance and age) were used, which were obtained from Eucalyptus grandis plantations. Using simple linear correlation and backward stepwise multiple regression analysis, the dependent variable (MAI) was related with physical and chemical characteristics of the soils. Two standards of contour curves were identified, one with close curves, narrow and surrounding the drainage network, in the steeper and lower altitude areas; the other, with spaced contour lines, in the areas of higher altitude and with plane relief. Six types of soils were characterized as being highly related to the physiographic patterns of the area: loamy sandy to sandy clayey Typic Hapludox (LVAd, 47.5%), clayey Rhodic Hapludox (LVd1, 33.4%), sandy clay Rhodic Hapludox (LVd2, 6%), clayey Rhodic Hapludox (LVdf, 9.1%), Entisols (G, 3.4%) and Fluvents soil (RY, 0.6%). There were large variations in wood productivity in the Eucalyptus grandis plantations, characterized in six classes, ranging from 26 to 52 m(3) ha(-1) yr(-1). These productivity changes were strictly related to soil mapping units. Through multiple regression analysis, we found that clay and organic matter contents were the attributes which most strongly explained the productivity differences.
Resumo:
The expansion of soybean cultivation into the Amazon in Brazil has potential hydrological effects at local to regional scales. To determine the impacts of soybean agriculture on hydrology, a comparison of net precipitation (throughfall, stemflow) in undisturbed tropical forest and soybean fields on the southern edge of the Amazon Basin in the state of Mato Grosso is needed. This study measured throughfall with troughs and stemflow with collar collectors during two rainy seasons. The results showed that in forest 91.6% of rainfall was collected as throughfall and 0.3% as stemflow, while in soybean fields with two-month old plants, 46.2% of rainfall was collected as throughfall and 9.0% as stemflow. Hence, interception of precipitation in soybean fields was far greater than in intact forests. Differences in throughfall, stemflow and net precipitation were found to be mainly associated with differences in plant structure and stem density in transitional forest and soybean cropland. Because rainfall interception in soybean fields is higher than previously believed and because both the area of cropland and the frequency of crop cycles (double cropping) are increasing rapidly, interception needs to be reconsidered in regional water balance models when consequences of land cover changes are analyzed in the Amazon soybean frontier region. Based on the continued expansion of soybean fields across the landscape and the finding that net precipitation is lower in soy agriculture, a reduction in water availability in the long term can be assumed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background RNAs transcribed from intronic regions of genes are involved in a number of processes related to post-transcriptional control of gene expression. However, the complement of human genes in which introns are transcribed, and the number of intronic transcriptional units and their tissue expression patterns are not known. Results A survey of mRNA and EST public databases revealed more than 55,000 totally intronic noncoding (TIN) RNAs transcribed from the introns of 74% of all unique RefSeq genes. Guided by this information, we designed an oligoarray platform containing sense and antisense probes for each of 7,135 randomly selected TIN transcripts plus the corresponding protein-coding genes. We identified exonic and intronic tissue-specific expression signatures for human liver, prostate and kidney. The most highly expressed antisense TIN RNAs were transcribed from introns of protein-coding genes significantly enriched (p = 0.002 to 0.022) in the 'Regulation of transcription' Gene Ontology category. RNA polymerase II inhibition resulted in increased expression of a fraction of intronic RNAs in cell cultures, suggesting that other RNA polymerases may be involved in their biosynthesis. Members of a subset of intronic and protein-coding signatures transcribed from the same genomic loci have correlated expression patterns, suggesting that intronic RNAs regulate the abundance or the pattern of exon usage in protein-coding messages. Conclusion We have identified diverse intronic RNA expression patterns, pointing to distinct regulatory roles. This gene-oriented approach, using a combined intron-exon oligoarray, should permit further comparative analysis of intronic transcription under various physiological and pathological conditions, thus advancing current knowledge about the biological functions of these noncoding RNAs.
Resumo:
LDL oxidation and oxidative stress are closely related to atherosclerosis. Therefore, natural antioxidants have been studied as promising candidates. In the present study, the LDL oxidation inhibition activity of bioactive compounds from Halimeda incrassata seaweed. associated to antioxidant capacity, was evaluated in vitro. Experimental work was conducted with lyophilized aqueous extract and phenolic-rich fractions of the seaweed and their effect on LDL oxidation was evaluated using heparin-precipitated LDL (hep-LDL) with exposure to Cu2+ ions and AAPH as the free radical generator. H. incrassata had a protective effect for hep-LDL in both systems and the presence of phenolic compounds contributed to the activity where phenolic-rich fractions showed significant capacity for inhibition of oxidation mediated by Cu2+ ions. The observed effect could be related to the antioxidant potential of polar fractions evidenced by reducing activity and DPPH radical scavenging. The results obtained in vitro further support the antioxidant and LDL oxidation inhibition properties of H. incrassata and further knowledge toward future phytotherapeutic application of the seaweed.
Resumo:
In this paper, nighttime light data are suggested as a proxy for spatial distribution of vehicles running in urban and nearby areas. Nighttime lights focus on human activities, in contrast to traditional Earth observing systems that focus on natural systems. It is the human activity being visible in the form of brightness of nocturnal lights. Two available nighttime lights dataset were used in this work. The first one was provided by the U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), henceforth, DMSO-OLS. The second one is the NASA-NOAA Suomi National Polar-orbiting Polar-orbiting Partnership (NPP) satellite, henceforth, Suomi-NPP. To validate the new proposed methodology, hundreds of urban areas of South America were analyzed in a high degree of resolution. The results of this study showed that night-time lights are very well correlated with vehicle fleet, population, and impervious surfaces but with strong spatial variability. The results of this study suggest a better understanding of the human activities in the context of a vehicular-based city conception.