18 resultados para Energy levels (Quantum mechanics)
Resumo:
Liquid configurations generated by Metropolis Monte Carlo simulations are used in time-dependent density functional theory calculations of the spectral line shifts and line profiles of the lowest lying excitation of the alkaline earth atoms, Be, Mg, Ca, Sr and Ba embedded in liquid helium. The results are in very good agreement with the available experimental data. Special attention is given to the calculated spectroscopic shift and the associated line broadening. The analysis specifies the inhomogeneous broadening of the three separate contributions due to the splitting of the s -> p transition of the alkaline earth atom in the liquid environment. (C) 2012 Elsevier B. V. All rights reserved.
Resumo:
We performed a first principles investigation on the electronic properties of 4f-rare earth substitutional impurities in zincblende gallium nitride (GaN:REGa, with RE=Eu, Gd, Tb, Dy, Ho, Er and Tm). The calculations were performed within the all electron methodology and the density functional theory. We investigated how the introduction of the on-site Hubbard U potential (GGA + U) corrects the electronic properties of those impurities. We showed that a self-consistent procedure to compute the Hubbard potential provides a reliable description on the position of the 4f-related energy levels with respect of the GaN valence band top. The results were compared to available data coming from a recent phenomenological model. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In this work, we reported some results about the stochastic quantization of the spherical model. We started by reviewing some basic aspects of this method with emphasis in the connection between the Langevin equation and the supersymmetric quantum mechanics, aiming at the application of the corresponding connection to the spherical model. An intuitive idea is that when applied to the spherical model this gives rise to a supersymmetric version that is identified with one studied in Phys. Rev. E 85, 061109, (2012). Before investigating in detail this aspect, we studied the stochastic quantization of the mean spherical model that is simpler to implement than the one with the strict constraint. We also highlight some points concerning more traditional methods discussed in the literature like canonical and path integral quantization. To produce a supersymmetric version, grounded in the Nicolai map, we investigated the stochastic quantization of the strict spherical model. We showed in fact that the result of this process is an off-shell supersymmetric extension of the quantum spherical model (with the precise supersymmetric constraint structure). That analysis establishes a connection between the classical model and its supersymmetric quantum counterpart. The supersymmetric version in this way constructed is a more natural one and gives further support and motivations to investigate similar connections in other models of the literature.