18 resultados para ENERGY FUNCTION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract This paper describes a design methodology for piezoelectric energy harvester s that thinly encapsulate the mechanical devices and expl oit resonances from higher- order vibrational modes. The direction of polarization determines the sign of the pi ezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Com- bining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direc- tion. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequen- tial linear programming on the early stage of the opti- mization, and the phase field method on the latter stage

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We analyze the transport of heat along a chain of particles interacting through anharmonic potentials consisting of quartic terms in addition to harmonic quadratic terms and subject to heat reservoirs at its ends. Each particle is also subject to an impulsive shot noise with exponentially distributed waiting times whose effect is to change the sign of its velocity, thus conserving the energy of the chain. We show that the introduction of this energy conserving stochastic noise leads to Fourier's law. That is for large system size L the heat current J behaves as J ‘approximately’ 1/L, which amounts to say that the conductivity k is constant. The conductivity is related to the current by J = kΔT/L, where ΔT is the difference in the temperatures of the reservoirs. The behavior of heat conductivity k for small intensities¸ of the shot noise and large system sizes L are obtained by assuming a scaling behavior of the type k = ‘L POT a Psi’(L’lambda POT a/b’) where a and b are scaling exponents. For the pure harmonic case a = b = 1, characterizing a ballistic conduction of heat when the shot noise is absent. For the anharmonic case we found values for the exponents a and b smaller then 1 and thus consistent with a superdiffusive conduction of heat without the shot noise. We also show that the heat conductivity is not constant but is an increasing function of temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reproducing Fourier's law of heat conduction from a microscopic stochastic model is a long standing challenge in statistical physics. As was shown by Rieder, Lebowitz and Lieb many years ago, a chain of harmonically coupled oscillators connected to two heat baths at different temperatures does not reproduce the diffusive behaviour of Fourier's law, but instead a ballistic one with an infinite thermal conductivity. Since then, there has been a substantial effort from the scientific community in identifying the key mechanism necessary to reproduce such diffusivity, which usually revolved around anharmonicity and the effect of impurities. Recently, it was shown by Dhar, Venkateshan and Lebowitz that Fourier's law can be recovered by introducing an energy conserving noise, whose role is to simulate the elastic collisions between the atoms and other microscopic degrees of freedom, which one would expect to be present in a real solid. For a one-dimensional chain this is accomplished numerically by randomly flipping - under the framework of a Poisson process with a variable “rate of collisions" - the sign of the velocity of an oscillator. In this poster we present Langevin simulations of a one-dimensional chain of oscillators coupled to two heat baths at different temperatures. We consider both harmonic and anharmonic (quartic) interactions, which are studied with and without the energy conserving noise. With these results we are able to map in detail how the heat conductivity k is influenced by both anharmonicity and the energy conserving noise. We also present a detailed analysis of the behaviour of k as a function of the size of the system and the rate of collisions, which includes a finite-size scaling method that enables us to extract the relevant critical exponents. Finally, we show that for harmonic chains, k is independent of temperature, both with and without the noise. Conversely, for anharmonic chains we find that k increases roughly linearly with the temperature of a given reservoir, while keeping the temperature difference fixed.