33 resultados para ENANTIOMERIC POLY(LACTIC ACID)S


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Strain ST211CH, identified as a strain of Enterococcus faecium, isolated from Lombo produced a bacteriocin that inhibited the growth of Enterococcus spp., Listeria spp., Klebsiella spp., Lactobacillus spp., Pseudomonas spp., Staphylococcus spp. and Streptococcus spp. The mode of action of the bacteriocin named as bacteriocin ST211Ch was bactericidal against Enterococcus faecalis ATCC19443. As determined by Tricine-SDS-PAGE, the approximate molecular mass of the bacteriocin was 8.0 kDa. Loss in antimicrobial activity was recorded after treatment with proteolytic enzymes. Maximum activity of bacteriocin ST211Ch was measured in broth cultures of E. faecium strain ST211Ch after 24 h; thereafter, the activity was reduced. Bacteriocin ST211Ch remained active after exposure to various temperatures and pHs, as well as to Triton X-100, Tween-80, Tween-20, sodium dodecyl sulfate, NaCl, urea and EDTA. Effect of media components on production of bacteriocin ST211Ch was also studied. On the basis of PCR reactions targeting different bacteriocin genes, i.e. enterocins, curvacins and sakacins, no evidences for the presence of these genes in the total DNA of E. faecium strain ST211Ch was obtained. The bacterium most probably produced a bacteriocin different from those mentioned above. Based on the antimicrobial spectrum, stability and mode of action of bacteriocin ST211CH, E. faecium strain ST211Ch might be considered as a potential candidate with beneficial properties for use in biopreservation to control food spoilage bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Goat breeding in Sardinia constitutes an important source of income for farming and shepherding activities. In this study 170 LAB strains were isolated from Sardinian goat's milk and tested for bacteriocins production against several food-borne pathogenic microorganisms. Four isolates (SD1, SD2, SD3 and SD4) were selected for their effective inhibition on Listeria monocytogenes. The strains were classified as members of Enterococcus genus, according to their biochemical and physiological characteristics, and then genetically identified as Enterococcus faecium. In MRS broth at 37 degrees C, bacteriocins SD1 and SD2 were produced at much higher levels (51200 AU/ml) compared to bacteriocin SD3 (3200 AU/ml) and bacteriocin SD4 (800 AU/ml). Their peptides were inactivated by proteolytic enzymes, but not when treated with alpha-amylase, catalase and lipase. The four bacteriocins remained stable at pH from 2.0 to 12.0, after exposure to 100 degrees C for 120 min and were not affected by the presence of surfactants and salts (N-Laourylsarcosine, NaCl, SDS, Triton X-100, Tween 20, Tween 80 and urea). Their molecular size was determined to be approximately 5 kDa by tricine-SDS-PAGE. Since the strains exhibited a strong antimicrobial activity against 21 L monocytogenes strains and 6 Salmonella spp. isolates, they should be considered as potential bio-preservatives cultures for fermented food productions. Moreover, due to their technological features, the four strains could be taken in account for using as adjunct NSLAB (non-starter lactic acid bacteria) rather than as starter culture. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several strains of Enterococcus spp. are capable of producing bacteriocins with antimicrobial activity against important bacterial pathogens in dairy products. In this study, the bacteriocins produced by two Enterococcus strains (Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch), isolated from cheeses, were characterized and tested for their capability to control growth of Listeria monocytogenes 426 in experimentally contaminated fresh Minas cheese during refrigerated storage. Both strains were active against a variety of pathogenic and non-pathogenic microorganisms and bacteriocin absorption to various L. monocytogenes, Enterococcus faecalis ATCC 19443 and Lactobacillus sakei ATCC 15521 varied according to the strain and the testing conditions (pH, temperature, presence of salts and surfactants). Growth of L. monocytogenes 426 was inhibited in cheeses containing E. mundtii CRL35 up to 12 days at 8 degrees C, evidencing a bacteriostatic effect. E. faecium ST88Ch was less effective, as the bacteriostatic affect occurred only after 6 days at 8 degrees C. In cheeses containing nisin (12.5 mg/kg), less than one log reduction was observed. This research underlines the potential application of E. mundtii CRL35 in the control of L. monocytogenes in Minas cheese. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to evaluate the effects of adding alkalis on the fermentative pattern, aerobic stability and nutritive value of the sugarcane silage. A completely randomized design with 6 additives in two concentrations (1 or 2%), plus a control group, totalizing 13 treatments [(6x2)+1] with four replications, was used. The additives were sodium hydroxide (NaOH), limestone (CaCO3), urea (CO(NH2)(2)), sodium bicarbonate (NaHCO3), quicklime (CaO) and hydrated lime (Ca(OH)(2)). The material was ensiled in 52 laboratory silos using plastic buckets with 12 L of capacity. Silos were opened 60 days after ensiling, when organic acids concentration, aerobic stability and chemical composition were determined. The Relative Biological Efficiency (RBE) was calculated by the slope ratio method, using the data obtained from ratio between desirable and undesirable silage products, according to the equation: D/U ratio = [lactic/(ethanol + acetic + butyric)]. All additives affected dry matter, crude protein, acid detergent fiber, neutral detergent fiber contents and buffering capacity. Except for urea and quicklime, all additives increased the in vitro dry matter digestibility. In general, these additives altered the fermentative pattern of sugarcane silage, inhibiting alcoholic fermentation and improving lactic acid production. The additive that showed the best RBE in relation to sodium hydroxide (100%) was limestone (89.4%). The RBE values of urea, sodium bicarbonate and hydrated lime were 49.2%, 47.7% and 34.3%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calcium carbonate is one of the most important biominerals, and it is the main constituent of pearls, seashells, and teeth. The in vitro crystallization of calcium carbonate using different organic matrices as templates has been reported. In this work, the growth of calcium carbonate thin films on special organic matrices consisting of layer-by-layer (LbL) polyelectrolyte films deposited on a pre-formed phospholipid Langmuir-Blodgett (LB) film has been studied. Two types of randomly coiled polyelectrolytes have been used: lambda-carrageenan and poly(acrylic acid). A precoating comprised of LB films has been prepared by employing a negatively charged phospholipid, the sodium salt of dimyristoilphosphatidyl acid (DMPA), or a zwitterionic phospholipid, namely dimyristoilphosphatidylethanolamine (DMPE). This approach resulted in the formation of particulate calcium carbonate continuous films with different morphologies, particle sizes, and roughness, as revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystalline structure of the calcium carbonate particles was analyzed by Raman spectroscopy. The randomly coiled conformation of the polyelectrolytes seems to be the main reason for the formation of continuous films rather than CaCO3 isolated crystals. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactic acid bacteria (LAB) are an attractive and safe alternative for the expression of heterologous proteins, as they are nonpathogenic and endotoxin-free organisms. Lactococcus lactis, the LAB model organism, has been extensively employed in the biotechnology field for large-scale production of heterologous proteins, and its use as a "cell factory" has been widely studied. We have been particularly interested in the use of L. lactis for production of heat shock proteins (HSPs), which reportedly play important roles in the initiation of innate and adaptive immune responses. However, this activity has been questioned, as LPS contamination appears to be responsible for most, if not all, immunostimulatory activity of HSPs. In order to study the effect of pure HSPs on the immune system, we constructed recombinant L. lactis strains able to produce and properly address the Mycobacterium leprae 65-kDa HSP (Hsp65) to the cytoplasm or to the extracellular medium, using a xylose-induced expression system. Approximately 7 mg/L recombinant Hsp65 was secreted. Degradation products related to lactococcal HtrA activity were not observed, and the Limulus amebocyte lysate assay demonstrated that the amount of LPS in the recombinant Hsp65 preparations was 10-100 times lower than the permitted levels established by the U. S. Food and Drug Administration. These new L. lactis strains will allow investigation of the effects of M. leprae Hsp65 without the interference of LPS; consequently, they have potential for a variety of biotechnological, medical and therapeutic applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In functional dairy products, polyunsaturated fatty acids such as, conjugated linoleic acid (CLA) and alpha-linolenic acid (ALA) have been highlighted for their benefits related to prevention of some chronic diseases. In order to study the effect of type of milk (conventional vs. organic, characterized by a specific fatty acid composition), Bifidobacterium animalis subsp. lactis (BB12, B94, BL04 and HN019) counts, acidification activity and chemical composition (pH, lactose, lactic acid contents and fatty acids profile) were investigated before fermentation and after 24 h of products stored at 4 degrees C. Organic and conventional milk influenced acidification performance and bacteria counts, which was strain-dependent. Higher counts of BB12 were observed in organic milk, whereas superior counts of BL04 were found in conventional milk. Organic fermented milk showed lower levels in saturated fatty acids (FA) and higher in monounsaturated FA contents. Similarly, among bioactive FA, organic fermented milks have higher amounts of trans vaccenic acid (TVA-C18:1t), conjugated linoleic acid (CLA) and slightly higher contents of alpha-linoleic acid (ALA). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lactobacillus sakei 1 is a food isolate that produces a heat-stable antimicrobial peptide (sakacin 1, a class ha bacteriocin) inhibitory to the opportunistic pathogen Listeria monocytogenes. Bacterial isolates with antimicrobial activity may be useful for food biopreservation and also for developing probiotics. To evaluate the probiotic potential of L. sakei I, it was tested for (i) in vitro gastric resistance (with synthetic gastric juice adjusted to pH 2.0, 2.5, or 3.0); (ii) survival and bacteriocin production in the presence of bile salts and commercial prebiotics (inulin and oligofructose); (iii) adhesion to Caco-2 cells; and (iv) effect on the adhesion of L. monocytogenes to Caco-2 cells and invasion of these cells by the organism. The results showed that L. sakei I survival in gastric environment varied according to pH, with the maximum survival achieved at pH 3.0, despite a 4-log reduction of the population after 3 h. Regarding the bile salt tolerance and influence of prebiotics, it was observed that L. sakei 1 survival rates were similar (P > 0.05) for all de Man Rogosa Shame (MRS) broth formulations when tests were done after 4 h of incubation. However, after incubation for 24 h, the survival of L. sakei 1 in MRS broth was reduced by 1.8 log (P < 0.001), when glucose was replaced by either inulin or oligofructose (without Oxgall). L. sakei 1 was unable to deconjugate bile salts, and there was a significant decrease (1.4 log) of the L. sakei 1 population in regular MRS broth plus Oxgall (P < 0.05). In spite of this, tolerance levels of L. sakei 1 to bile salts were similar in regular MRS broth and in MRS broth with oligofructose. Lower bacteriocin production was observed in MRS broth when inulin (3,200 AU/ml) or oligofructose (2,400 AU/ml) was used instead of glucose (6,400 AU/ml). L. sakei I adhered to Caco-2 cells, and its cell-free pH-neutralized supernatant containing sakacin I led to a significant reduction of in vitro listerial invasion of human intestinal Caco-2 cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metabolic studies are very important to improve quality of functional dairy products. For this purpose, the behaviors of pure cultures of Streptococcus thermophilus (St) and Lactobacillus rhamnosus (Lr) as well a co-culture of them (St-Lr) were investigated during skim milk fermentation, and the inulin effect as prebiotic was assessed. Lr was able to metabolize 6 g/100 g more galactose than St and St-Lr. Final lactic acid production by Lr was higher (9.8 g/L) compared to St (9.1 g/L) and St-Lr (9.1 g/L). Acetic acid concentration varied from 0.8 g/L (St-Lr) to 1.5 g/L (Lr) and that of ethanol from only 0.2 g/L (St-Lr) to 0.4 g/L (Lr), which suggests the occurrence in Lr of a NADH oxidase activity and citrate co-metabolization via pyruvate, both dissipating a part of the reducing power. Diacetyl and acetoin accumulated at the highest levels (18.4 and 0.8 mg/L, respectively) with St-Lr, which suggests possible synergistic interactions between these microorganisms as well as the Lr capability of co-metabolizing citrate in the presence of lactose. Inulin stimulated both biomass growth and levels of all end-products, as the likely result of fructose release from its partial hydrolysis and subsequent metabolization as an additional carbon and energy source. Crown Copyright (C) 2012 Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To shed light on the interactions occurring in fermented milks when using co-cultures of Streptococcus thermophilus with Lactobacillus bulgaricus (StLb) or Lactobacillus acidophilus (StLa), a new co-metabolic model was proposed and checked either in the presence of Inulin as a prebiotic or not. For this purpose, the experimental data of concentrations of substrates and fermented products were utilized in balances of carbon, reduction degree and ATP. S. thermophilus exhibited always quicker growth compared to the other two microorganisms, while the percentage of lactose fermented to lactic acid, that of galactose metabolized, and the levels of diacetyl and acetoin formed strongly depended on the type of co-culture and the presence of inulin. The StLb co-culture led to higher acetoin and lower diacetyl levels compared to StLa, probably because of more reducing conditions or limited acetoin dehydrogenation. Inulin addition to StLa suppressed acetoin accumulation and hindered that of diacetyl, suggesting catabolite repression of alpha-acetolactate synthase expression in S. thermophilus. Both co-cultures showed the highest ATP requirements for biomass growth and maintenance at the beginning of fermentation, consistently with the high energy demand of enzyme induction during lag phase. Inulin reduced these requirements making biomass synthesis and maintenance less energy-consuming. Only a fraction of galactose was released from lactose, consistently with the galactose-positive phenotype of most dairy strains. The galactose fraction metabolized without inulin was about twice that in its presence, which suggests inhibition of the galactose transport system of S. thermophilus by fructose released from partial inulin hydrolysis. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nisin is a promising alternative to chemical preservatives for use as a natural biopreservative in foods. This bacteriocin has also potential biomedical applications. Lactic acid bacteria are commonly cultivated in expensive standard complex media. We have evaluated the cell growth and nisin production of Lactococcus lactis in a low-cost natural medium consisting of diluted skimmed milk in a 2-L bioreactor. The assays were performed at 30 degrees C for 56 h, at varying agitation speeds and airflow rates: (1) 200 rpm (no airflow, and airflow at 0.5, 1.0 and 2.0 L/min); (2) 100 rpm (no airflow, and airflow at 0.5 L/min). Nisin activity was evaluated using agar diffusion assays. The highest nisin concentration, 49.88 mg/L (3.3 log AU/mL or 1,995.29 AU/mL), was obtained at 16 h of culture, 200 rpm and no airflow (k(L)a = 5.29 x 10(-3)). These results show that a cultivation medium composed of diluted skimmed milk supports cell growth to facilitate nisin biosynthesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of the addition of passion fruit peel powder (PFPP) on the fermentation kinetics and texture parameters, post-acidification and bacteria counts of probiotic yoghurts made with two milk types were evaluated during 28 days of storage at 4 degrees C. Milks were fermented by Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus (CY340), and one strain of probiotic bacteria: Lactobacillus acidophilus (L10 and NCFM), Bifidobacterium animalis subsp. lactis (8104 and HN019). The addition of PFPP reduced significantly fermentation time of skim milk co-fermented by the strains L10, NCFM and HN019. At the end of 28-day shelf-life, counts of B. lactis Bl04 were about 1 Log CFU mL(-1) higher in whole yoghurt fermented with PFPP regarding its control but, in general, the addition of PFPP had less influence on counts than the milk type itself. The titratable acidity in yoghurts with PFPP was significantly higher than in their respective controls, and in skim yoghurts higher than in the whole ones. The PFPP increased firmness, consistency (except for the NCFM strain of L acidophilus) and cohesiveness of all skim yoghurts. The results point out the suitability of using passion fruit by-product in the formulation of both skim and whole probiotic yoghurts. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic nanoparticles are promising for a variety of applications, such as biomedical devices, spin electronics, magnetic data storage media, to name a few. However, these goals may only be reached if stable and organized structures are fabricated. In this article, we report on a single-step synthetic route with the coprecipitation method, in which iron oxide magnetic nanoparticles (Fe3O4 NPs) were stabilized in aqueous media using the poly(diallyldimethylammonium chloride) (PDAC) polyelectrolyte. The Fe3O4 NPs had a diameter of ca. 5 nm, according to transmission electron microscopy (TEM) images, being arranged in an inverse spinel structure typical of magnetite. An investigation with infrared spectroscopy indicated that the mechanisms of stabilization in the polymer matrix were based on the interaction between quaternary amide groups from PDAC and the nanoparticle surface. The Fe3O4-PDAC NPs exhibited considerable magnetic susceptibility, with a monotonic increase in the magnetization with decreasing temperature. These Fe3O4-PDAC NPs were immobilized in layer-by-layer (LbL) films, being alternated with layers of poly(vinylsulfonic acid) (PVS). The LbL films were much rougher than typical films made with polyelectrolytes, and Fe3O4-PDAC NPs have been responsible for the high electrocatalytic activity toward H2O2 reduction, with an overpotential shift of 0.69 V. Overall, the stability, magnetic properties and film-forming ability indicate that the Fe3O4-PDAC NPs may be used for nanoelectronics and bioelectrochemical devices requiring reversible and magnetic redox materials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Capability to produce antilisterial bacteriocins by lactic acid bacteria (LAB) can be explored by the food industry as a tool to increase the safety of foods. Furthermore, probiotic activity of bacteriogenic LAB brings extra advantages to these strains, as they can confer health benefits to the consumer. Beneficial effects depend on the ability of the probiotic strains to maintain viability in the food during shelf-life and to survive the natural defenses of the host and multiply in the gastrointestinal tract (GIT). This study evaluated the probiotic potential of a bacteriocinogenic Lactobacillus plantarum strain (Lb. plantarum ST16Pa) isolated from papaya fruit and studied the effect of encapsulation in alginate on survival in conditions simulating the human GIT. Good growth of Lb. plantarum ST16Pa was recorded in MRS broth with initial pH values between 5.0 and 9.0 and good capability to survive in pH 4.0, 11.0 and 13.0. Lb. plantarum ST16Pa grew well in the presence of oxbile at concentrations ranging from 0.2 to 3.0%. The level of auto-aggregation was 37%, and various degrees of co-aggregation were observed with different strains of Lb. plantarum, Enterococcus spp., Lb. sakei and Listeria, which are important features for probiotic activity. Growth was affected negatively by several medicaments used for human therapy, mainly anti-inflammatory drugs and antibiotics. Adhesion to Caco-2 cells was within the range reported for other probiotic strains, and PCR analysis indicated that the strain harbored the adhesion genes mapA, mub and EF-Tu. Encapsulation in 2, 3 and 4% alginate protected the cells from exposure to 1 or 2% oxbile added to MRS broth. Studies in a model simulating the transit through the GIT indicated that encapsulated cells were protected from the acidic conditions in the stomach but were less resistant when in conditions simulating the duodenum, jejunum, ileum and first section of the colon. To our knowledge, this is the first report on a bacteriocinogenic LAB isolated from papaya that presents application in food biopreservation and may be beneficial to the consumer health due to its potential probiotic characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study correlated the composition of the spoilage bacterial flora with the main gaseous and volatile organic compounds (VOCs) found in the package headspace of spoiled, chilled, vacuum-packed meat. Fifteen chilled, vacuum-packed beef samples, suffering from blown pack spoilage, were studied using 16S rRNA clone sequencing. More than 50% of the bacteria were identified as lactic acid bacteria (LAB), followed by clostridia and enterobacteria. Fifty-one volatile compounds were detected in the spoiled samples. Although the major spoilage compounds were identified as alcohols and aldehydes, CO2 was identified as the major gas in the spoiled samples by headspace technique. Different species of bacteria contribute to different volatile compounds during meat spoilage. LAB played an important role in blown pack deterioration of the Brazilian beef studied.