29 resultados para ELEMENT-105
Resumo:
Evidences have suggested that the endocannabinoid system is overactive in obesity, resulting in enhanced endocannabinoid levels in both circulation and visceral adipose tissue. The blockade of cannabinoid receptor type 1 (CB1) has been proposed for the treatment of obesity. Besides loss of body weight, CB1 antagonism improves insulin sensitivity, in which the glucose transporter type 4 (GLUT4) plays a key role. The aim of this study was to investigate the modulation of GLUT4-encoded gene (Slc2a4 gene) expression by CB1 receptor. For this, 3T3-L1 adipocytes were incubated in the presence of a highly selective CB1 receptor agonist (1 mu M arachidonyl-2'-chloroethylamide) and/or a CB1 receptor antagonist/inverse agonist (0.1, 0.5, or 1 mu M AM251, 1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide). After acute (2 and 4 h) and chronic (24 h) treatments, cells were harvested to evaluate: i) Slc2a4, Cnr1 (CB1 receptor-encoded gene), and Srebf1 type a (SREBP-1a type-encoded gene) mRNAs (real-time PCR); ii) GLUT4 protein (western blotting); and iii) binding activity of nuclear factor (NF)-kappa B and sterol regulatory element-binding protein (SREBP)-1 specifically in the promoter of Slc2a4 gene (electrophoretic mobility shift assay). Results revealed that both acute and chronic CB1 receptor antagonism greatly increased (similar to 2.5-fold) Slc2a4 mRNA and protein content. Additionally, CB1-induced upregulation of Slc2a4 was accompanied by decreased binding activity of NF-kappa B at 2 and 24 h, and by increased binding activity of the SREBP-1 at 24 h. In conclusion, these findings reveal that the blockade of CB1 receptor markedly increases Slc2a4/GLUT4 expression in adipocytes, a feature that involves NF-kappa B and SREBP-1 transcriptional regulation. Journal of Molecular Endocrinology (2012) 49, 97-106
Resumo:
Statement of problem. The retention of an Aramany Class IV removable partial dental prosthesis can be compromised by a lack of support. The biomechanics of this obturator prosthesis result in an unusual stress distribution on the residual maxillary bone. Purpose. This study evaluated the biomechanics of an Aramany Class IV obturator prosthesis with finite element analysis and a digital 3-dimensional (3-D) model developed from a computed tomography scan; bone stress was evaluated according to the load placed on the prosthesis. Material and methods. A 3-D model of an Aramany Class IV maxillary resection and prosthesis was constructed. This model was used to develop a finite element mesh. A 120 N load was applied to the occlusal and incisal platforms corresponding to the prosthetic teeth. Qualitative analysis was based on the scale of maximum principal stress; values obtained through quantitative analysis were expressed in MPa. Results. Under posterior load, tensile and compressive stresses were observed; the tensile stress was greater than the compressive stress, regardless of the bone region, and the greatest compressive stress was observed on the anterior palate near the midline. Under an anterior load, tensile stress was observed in all of the evaluated bone regions; the tensile stress was greater than the compressive stress, regardless of the bone region. Conclusions. The Aramany Class IV obturator prosthesis tended to rotate toward the surgical resection when subjected to posterior or anterior loads. The amount of tensile and compressive stress caused by the Aramany Class IV obturator prosthesis did not exceed the physiological limits of the maxillary bone tissue. (J Prosthet Dent 2012;107:336-342)
Resumo:
This paper addresses the numerical solution of random crack propagation problems using the coupling boundary element method (BEM) and reliability algorithms. Crack propagation phenomenon is efficiently modelled using BEM, due to its mesh reduction features. The BEM model is based on the dual BEM formulation, in which singular and hyper-singular integral equations are adopted to construct the system of algebraic equations. Two reliability algorithms are coupled with BEM model. The first is the well known response surface method, in which local, adaptive polynomial approximations of the mechanical response are constructed in search of the design point. Different experiment designs and adaptive schemes are considered. The alternative approach direct coupling, in which the limit state function remains implicit and its gradients are calculated directly from the numerical mechanical response, is also considered. The performance of both coupling methods is compared in application to some crack propagation problems. The investigation shows that direct coupling scheme converged for all problems studied, irrespective of the problem nonlinearity. The computational cost of direct coupling has shown to be a fraction of the cost of response surface solutions, regardless of experiment design or adaptive scheme considered. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The generalized finite element method (GFEM) is applied to a nonconventional hybrid-mixed stress formulation (HMSF) for plane analysis. In the HMSF, three approximation fields are involved: stresses and displacements in the domain and displacement fields on the static boundary. The GFEM-HMSF shape functions are then generated by the product of a partition of unity associated to each field and the polynomials enrichment functions. In principle, the enrichment can be conducted independently over each of the HMSF approximation fields. However, stability and convergence features of the resulting numerical method can be affected mainly by spurious modes generated when enrichment is arbitrarily applied to the displacement fields. With the aim to efficiently explore the enrichment possibilities, an extension to GFEM-HMSF of the conventional Zienkiewicz-Patch-Test is proposed as a necessary condition to ensure numerical stability. Finally, once the extended Patch-Test is satisfied, some numerical analyses focusing on the selective enrichment over distorted meshes formed by bilinear quadrilateral finite elements are presented, thus showing the performance of the GFEM-HMSF combination.
Resumo:
We consider a recently proposed finite-element space that consists of piecewise affine functions with discontinuities across a smooth given interface Γ (a curve in two dimensions, a surface in three dimensions). Contrary to existing extended finite element methodologies, the space is a variant of the standard conforming Formula space that can be implemented element by element. Further, it neither introduces new unknowns nor deteriorates the sparsity structure. It is proved that, for u arbitrary in Formula, the interpolant Formula defined by this new space satisfies Graphic where h is the mesh size, Formula is the domain, Formula, Formula, Formula and standard notation has been adopted for the function spaces. This result proves the good approximation properties of the finite-element space as compared to any space consisting of functions that are continuous across Γ, which would yield an error in the Formula-norm of order Graphic. These properties make this space especially attractive for approximating the pressure in problems with surface tension or other immersed interfaces that lead to discontinuities in the pressure field. Furthermore, the result still holds for interfaces that end within the domain, as happens for example in cracked domains.
Resumo:
The stability of two recently developed pressure spaces has been assessed numerically: The space proposed by Ausas et al. [R.F. Ausas, F.S. Sousa, G.C. Buscaglia, An improved finite element space for discontinuous pressures, Comput. Methods Appl. Mech. Engrg. 199 (2010) 1019-1031], which is capable of representing discontinuous pressures, and the space proposed by Coppola-Owen and Codina [A.H. Coppola-Owen, R. Codina, Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions, Int. J. Numer. Methods Fluids, 49 (2005) 1287-1304], which can represent discontinuities in pressure gradients. We assess the stability of these spaces by numerically computing the inf-sup constants of several meshes. The inf-sup constant results as the solution of a generalized eigenvalue problems. Both spaces are in this way confirmed to be stable in their original form. An application of the same numerical assessment tool to the stabilized equal-order P-1/P-1 formulation is then reported. An interesting finding is that the stabilization coefficient can be safely set to zero in an arbitrary band of elements without compromising the formulation's stability. An analogous result is also reported for the mini-element P-1(+)/P-1 when the velocity bubbles are removed in an arbitrary band of elements. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background The mitochondrial DNA of kinetoplastid flagellates is distinctive in the eukaryotic world due to its massive size, complex form and large sequence content. Comprised of catenated maxicircles that contain rRNA and protein-coding genes and thousands of heterogeneous minicircles encoding small guide RNAs, the kinetoplast network has evolved along with an extreme form of mRNA processing in the form of uridine insertion and deletion RNA editing. Many maxicircle-encoded mRNAs cannot be translated without this post-transcriptional sequence modification. Results We present the complete sequence and annotation of the Trypanosoma cruzi maxicircles for the CL Brener and Esmeraldo strains. Gene order is syntenic with Trypanosoma brucei and Leishmania tarentolae maxicircles. The non-coding components have strain-specific repetitive regions and a variable region that is unique for each strain with the exception of a conserved sequence element that may serve as an origin of replication, but shows no sequence identity with L. tarentolae or T. brucei. Alternative assemblies of the variable region demonstrate intra-strain heterogeneity of the maxicircle population. The extent of mRNA editing required for particular genes approximates that seen in T. brucei. Extensively edited genes were more divergent among the genera than non-edited and rRNA genes. Esmeraldo contains a unique 236-bp deletion that removes the 5'-ends of ND4 and CR4 and the intergenic region. Esmeraldo shows additional insertions and deletions outside of areas edited in other species in ND5, MURF1, and MURF2, while CL Brener has a distinct insertion in MURF2. Conclusion The CL Brener and Esmeraldo maxicircles represent two of three previously defined maxicircle clades and promise utility as taxonomic markers. Restoration of the disrupted reading frames might be accomplished by strain-specific RNA editing. Elements in the non-coding region may be important for replication, transcription, and anchoring of the maxicircle within the kinetoplast network.
Resumo:
The treatment of a transverse maxillary deficiency in skeletally mature individuals should include surgically assisted rapid palatal expansion. This study evaluated the distribution of stresses that affect the expander's anchor teeth using finite element analysis when the osteotomy is varied. Five virtual models were built and the surgically assisted rapid palatal expansion was simulated. Results showed tension on the lingual face of the teeth and alveolar bone, and compression on the buccal side of the alveolar bone. The subtotal Le Fort I osteotomy combined with intermaxillary suture osteotomy seemed to reduce the dissipation of tensions. Therefore, subtotal Le Fort I osteotomy without a step in the zygomaticomaxillary buttress, combined with intermaxillary suture osteotomy and pterygomaxillary disjunction may be the osteotomy of choice to reduce tensions on anchor teeth, which tend to move mesiobuccally (premolar) and distobuccally (molar)
Resumo:
The purpose of this study was to assess the composition of the rainwater in Araraquara City, Brazil, a region strongly influenced by pre-harvest burning of sugar cane crops. Chemical and mineralogical variables were measured in rainwater collected during the harvest, dry period of 2009 and the non-harvest, wet period of 2010. Ca2+ and NH4+ were responsible for 55% of cations and NO3- for 45% of anions in rainwater. Al and Fe along with K were the most abundant among trace elements in both soluble and insoluble fractions. High volume weighted mean concentration (VWM) for most of the analyzed species were observed in the harvest, dry period, mainly due to agricultural activities and meteorological conditions. The chemistry of the Araraquara rainwater and principal component analysis (PCA) quantification clearly indicate the concurrence of a diversity of sources from natural to anthropogenic especially related to agricultural activities.
Resumo:
AIM: To explore the biomechanical effects of the different implantation bone levels of Morse taper implants, employing a finite element analysis (FEA). METHODS: Dental implants (TitamaxCM) with 4x13 mm and 4x11 mm, and their respective abutments with 3.5 mm height, simulating a screwed premolar metal-ceramic crown, had their design performed using the software AnsysWorkbench 10.0. They were positioned in bone blocks, covered by 2.5 mm thickness of mucosa. The cortical bone was designed with 1.5 mm thickness and the trabecular bone completed the bone block. Four groups were formed: group 11CBL (11 mm implant length on cortical bone level), group 11TBL (11 mm implant length on trabecular bone level), group 13CBL (13mm implant length on cortical bone level) and group 13TBL (13 mm implant length on trabecular bone level). Oblique 200 N loads were applied. Von Mises equivalent stresses in cortical and trabecular bones were evaluated with the same design program. RESULTS: The results were shown qualitatively and quantitatively by standard scales for each type of bone. By the results obtained, it can be suggested that positioning the implant completely in trabecular bone brings harm with respect to the generated stresses. Its implantation in the cortical bone has advantages with respect to better anchoring and locking, reflecting a better dissipation of the stresses along the implant/bone interfaces. In addition, the search for anchoring the implant in its apical region in cortical bone is of great value to improve stabilization and consequently better stress distribution. CONCLUSIONS: The implant position slightly below the bone in relation to the bone crest brings advantages as the best long-term predictability with respect to the expected neck bone loss.
Resumo:
The importance of mechanical aspects related to cell activity and its environment is becoming more evident due to their influence in stem cell differentiation and in the development of diseases such as atherosclerosis. The mechanical tension homeostasis is related to normal tissue behavior and its lack may be related to the formation of cancer, which shows a higher mechanical tension. Due to the complexity of cellular activity, the application of simplified models may elucidate which factors are really essential and which have a marginal effect. The development of a systematic method to reconstruct the elements involved in the perception of mechanical aspects by the cell may accelerate substantially the validation of these models. This work proposes the development of a routine capable of reconstructing the topology of focal adhesions and the actomyosin portion of the cytoskeleton from the displacement field generated by the cell on a flexible substrate. Another way to think of this problem is to develop an algorithm to reconstruct the forces applied by the cell from the measurements of the substrate displacement, which would be characterized as an inverse problem. For these kind of problems, the Topology Optimization Method (TOM) is suitable to find a solution. TOM is consisted of an iterative application of an optimization method and an analysis method to obtain an optimal distribution of material in a fixed domain. One way to experimentally obtain the substrate displacement is through Traction Force Microscopy (TFM), which also provides the forces applied by the cell. Along with systematically generating the distributions of focal adhesion and actin-myosin for the validation of simplified models, the algorithm also represents a complementary and more phenomenological approach to TFM. As a first approximation, actin fibers and flexible substrate are represented through two-dimensional linear Finite Element Method. Actin contraction is modeled as an initial stress of the FEM elements. Focal adhesions connecting actin and substrate are represented by springs. The algorithm was applied to data obtained from experiments regarding cytoskeletal prestress and micropatterning, comparing the numerical results to the experimental ones
Resumo:
The most important property of austenitic stainless steels is corrosion resistance. In these steels, the transition between paramagnetic and ferromagnetic conditions occurs at low temperatures. Therefore, the use of austenitic stainless steels in conditions in which ferromagnetism absence is important can be considered. On the other hand, the formation of strain-induced martensite is detected when austenitic stainless steels are deformed as well as machined. The strain-induced martensite formed especially in the machining process is not uniform through the chip and its formation can also be related to the Md temperature. Therefore, both the temperature distribution and the gradient during the cutting and chip formation are important to identify regions in which martensite formation is propitiated. The main objective here is evaluate the strain-induced martensite formation throughout machining by observing microstructural features and comparing these to thermal results obtained through finite element method analysis. Results show that thermal analysis can give support to the martensite identified in the microstructural analysis.
Resumo:
Hermite interpolation is increasingly showing to be a powerful numerical solution tool, as applied to different kinds of second order boundary value problems. In this work we present two Hermite finite element methods to solve viscous incompressible flows problems, in both two- and three-dimension space. In the two-dimensional case we use the Zienkiewicz triangle to represent the velocity field, and in the three-dimensional case an extension of this element to tetrahedra, still called a Zienkiewicz element. Taking as a model the Stokes system, the pressure is approximated with continuous functions, either piecewise linear or piecewise quadratic, according to the version of the Zienkiewicz element in use, that is, with either incomplete or complete cubics. The methods employ both the standard Galerkin or the Petrov–Galerkin formulation first proposed in Hughes et al. (1986) [18], based on the addition of a balance of force term. A priori error analyses point to optimal convergence rates for the PG approach, and for the Galerkin formulation too, at least in some particular cases. From the point of view of both accuracy and the global number of degrees of freedom, the new methods are shown to have a favorable cost-benefit ratio, as compared to velocity Lagrange finite elements of the same order, especially if the Galerkin approach is employed.