20 resultados para ECM fungi-plant interactions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the diversity of endophytic fungi found on grape (Vitis labrusca cv. Niagara Rosada) leaves collected from Salesopolis, SP, Brazil. The fungi were isolated and characterized by amplified ribosomal DNA restriction analysis, followed by sequencing of the ITS1-5.8S-ITS2 rDNA. In addition, the ability of these endophytic fungi to inhibit the grapevine pathogen Fusarium oxysporum f. sp herbemontis was determined in vitro. We also observed that the climatic factors, such as temperature and rainfall, have no effect on the frequency of infection by endophytic fungi. The endophytic fungal community that was identified included Aporospora terricola, Aureobasidium pullulans, Bjerkandera adusta, Colletotrichum boninense, C. gloeosporioides, Diaporthe helianthi, D. phaseolorum, Epicoccum nigrum, Flavodon flavus, Fusarium subglutinans, F. sacchari, Guignardia mangiferae, Lenzites elegans, Paraphaeosphaeria pilleata, Phanerochaete sordida, Phyllosticta sp, Pleurotus nebrodensis, Preussia africana, Tinctoporellus epiniltinus, and Xylaria berteri. Among these isolates, two, C. gloeosporioides and F. flavus, showed potential antagonistic activity against F. oxysporum f. sp herbemontis. We suggest the involvement of the fungal endophyte community of V. labrusca in protecting the host plant against pathogenic Fusarium species. Possibly, some endophytic isolates could be selected for the development of biological control agents for grape fungal disease; alternatively, management strategies could be tailored to increase these beneficial fungi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background The CACTA (also called En/Spm) superfamily of DNA-only transposons contain the core sequence CACTA in their Terminal Inverted Repeats (TIRs) and so far have only been described in plants. Large transcriptome and genome sequence data have recently become publicly available for Schistosoma mansoni, a digenetic blood fluke that is a major causative agent of schistosomiasis in humans, and have provided a comprehensive repository for the discovery of novel genes and repetitive elements. Despite the extensive description of retroelements in S. mansoni, just a single DNA-only transposon belonging to the Merlin family has so far been reported in this organism. Results We describe a novel S. mansoni transposon named SmTRC1, for S. mansoni Transposon Related to CACTA 1, an element that shares several characteristics with plant CACTA transposons. Southern blotting indicates approximately 30–300 copies of SmTRC1 in the S. mansoni genome. Using genomic PCR followed by cloning and sequencing, we amplified and characterized a full-length and a truncated copy of this element. RT-PCR using S. mansoni mRNA followed by cloning and sequencing revealed several alternatively spliced transcripts of this transposon, resulting in distinct ORFs coding for different proteins. Interestingly, a survey of complete genomes from animals and fungi revealed several other novel TRC elements, indicating new families of DNA transposons belonging to the CACTA superfamily that have not previously been reported in these kingdoms. The first three bases in the S. mansoni TIR are CCC and they are identical to those in the TIRs of the insects Aedes aegypti and Tribolium castaneum, suggesting that animal TRCs may display a CCC core sequence. Conclusion The DNA-only transposable element SmTRC1 from S. mansoni exhibits various characteristics, such as generation of multiple alternatively-spliced transcripts, the presence of terminal inverted repeats at the extremities of the elements flanked by direct repeats and the presence of a Transposase_21 domain, that suggest a distant relationship to CACTA transposons from Magnoliophyta. Several sequences from other Metazoa and Fungi code for proteins similar to those encoded by SmTRC1, suggesting that such elements have a common ancestry, and indicating inheritance through vertical transmission before separation of the Eumetazoa, Fungi and Plants.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. Results We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (KD) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a KD of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. Conclusions We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have demonstrated that volatile organic compounds (VOCs), produced by the yeast Saccharomyces cerevisiae, were able to inhibit the development of phytopathogenic fungi. In this context, the nematicidal potential of the synthetic mixture of VOCs, constituted of alcohols and esters, was evaluated for the control of the root-knot nematode Meloidogyne javanica, which causes losses to crops of high economic value. The fumigation of substrate containing second-stage juveniles with VOCs exhibited nematicidal effect higher than 30% for the lowest concentration tested (33.3 µL g-1 substrate), whereas at 66.6 and 133.3 µL g-1 substrate, the nematode mortality was 100%. The present results stimulate other studies on VOCs for nematode management.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Various features of the biology of the rust fungi and of the epidemiology of the plant diseases they cause illustrate the important role of rainfall in their life history. Based on this insight we have characterized the ice nucleation activity (INA) of the aerially disseminated spores (urediospores) of this group of fungi. Urediospores of this obligate plant parasite were collected from natural infections of 7 species of weeds in France, from coffee in Brazil and from field and greenhouse-grown wheat in France, the USA, Turkey and Syria. Immersion freezing was used to determine freezing onset temperatures and the abundance of ice nuclei in suspensions of washed spores. Microbiological analyses of spores from France, the USA and Brazil, and subsequent tests of the ice nucleation activity of the bacteria associated with spores were deployed to quantify the contribution of bacteria to the ice nucleation activity of the spores. All samples of spores were ice nucleation active, having freezing onset temperatures as high as −4 °C. Spores in most of the samples carried cells of ice nucleation-active strains of the bacterium Pseudomonas syringae (at rates of less than 1 bacterial cell per 100 urediospores), but bacterial INA accounted for only a small fraction of the INA observed in spore suspensions. Changes in the INA of spore suspensions after treatment with lysozyme suggest that the INA of urediospores involves a polysaccharide. Based on data from the literature, we have estimated the concentrations of urediospores in air at cloud height and in rainfall. These quantities are very similar to those reported for other biological ice nucleators in these same substrates. However, at cloud level convective activity leads to widely varying concentrations of particles of surface origin, so that mean concentrations can underestimate their possible effects on clouds. We propose that spatial and temporal concentrations of biological ice nucleators active at temperatures > −10 °C and the specific conditions under which they can influence cloud glaciation need to be further evaluated so as to understand how evolutionary processes could have positively selected for INA.