21 resultados para Donor Lymphocyte Infusions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study shows that MP-1, a peptide from the venom of the Polybia paulista wasp, is more toxic to human leukemic T-lymphocytes than to human primary lymphocytes. By using model membranes and electrophysiology measurements to investigate the molecular mechanisms underlying this selective action, the porelike activity of MP-1 was identified with several bilayer compositions. The highest average conductance was found in bilayers formed by phosphatidylcholine or a mixture of phosphatidylcholine and phosphatidylserine (70:30). The presence of cholesterol or cardiolipin substantially decreases the MP-1 pore activity, suggesting that the membrane fluidity influences the mechanism of selective toxicity. The determination of partition coefficients from the anisotropy of Tip indicated higher coefficients for the anionic bilayers. The partition coefficients were found to be 1 order of magnitude smaller when the bilayers contain cholesterol or a mixture of cholesterol and sphingomyelin. The blue shift fluorescence, anisotropy values, and Stern-Volmer constants are indications of a deeper penetration of MP-1 into anionic bilayers than into zwitterionic bilayers. Our results indicate that MP-1 prefers to target leukemic cell membranes, and its toxicity is probably related to the induction of necrosis and not to DNA fragmentation. This mode of action can be interpreted considering a number of bilayer properties like fluidity, lipid charge, and domain formation. Cholesterol-containing bilayers are less fluid and less charged and have a tendency to form domains. In comparison to healthy cells, leukemic T-lymphocyte membranes are deprived of this lipid, resulting in decreased peptide binding and lower conductance. We showed that the higher content of anionic lipids increases the level of binding of the peptide to bilayers. Additionally, the absence of cholesterol resulted in enhanced pore activity. These findings may drive the selective toxicity of MP-1 to Jurkat cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The increase in solid organ transplantations may soon create a rise in the occurrence of endemic fungal diseases, such as paracoccidioidomycosis, due to the lack of rigorous screening of donors from endemic areas. Here we present the first case of an immunocompetent and asymptomatic kidney donor who had Paracoccidioides brasiliensis infected-adrenal tissue but no glandular dysfunction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In humans and other mammals, sperm morphology has been considered one of the most important predictive parameters of fertility. The objective was to determine the presence and distribution of sperm head morphometric subpopulations in a nonhuman primate model (Callithrix jacchus), using an objective computer analysis system and principal component analysis (PCA) methods to establish the relationship between the subpopulation distribution observed and among-donor variation. The PCA method revealed a stable number of principal components in all donors studied, that represented more than 85% of the cumulative variance in all cases. After cluster analysis, a variable number (from three to seven) sperm morphometric subpopulations were identified with defined sperm dimensions and shapes. There were differences in the distribution of the sperm morphometric subpopulations (P < 0.001) in all ejaculates among the four donors analyzed. In conclusion, in this study, computerized sperm analysis methods combined with PCA cluster analyses were useful to identify, classify, and characterize various head sperm morphometric subpopulations in nonhuman primates, yielding considerable biological information. In addition, because all individuals were kept in the same conditions, differences in the distribution of these subpopulations were not attributed to external or management factors. Finally, the substantial information derived from subpopulation analyses provided new and relevant biological knowledge which may have a practical use for future studies in human and nonhuman primate ejaculates, including identifying individuals more suitable for assisted reproductive technologies. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While human immunodeficiency virus (HIV)-1 chemokine co-receptors 5 tropism and the GWGR motif in the envelope third variable region (V3 loop) have been associated with a slower disease progression, their influence on antiretroviral response remains unclear. The impact of baseline V3 characteristics on treatment response was evaluated in a randomised, double blind, prospective cohort study with patients initiating highly active antiretroviral therapy with lopinavir or efavirenz plus azithothymidine/3TC (1:1) over 48 weeks. Similar virological and immunological responses were observed for both treatment regimens. The 43 individuals had a mean baseline CD4 T cell count of 119 cells/mm³ [standard deviation (SD) = 99] and a mean viral load of 5.09 log10 copies/mL (SD = 0.49). The GWGR motif was not associated with a CD4 T cell response, but predicted R5 tropism by the geno2pheno[clinical20%] algorithm correlated with higher CD4 T cell levels at all monitoring points (p < 0.05). Moreover, higher false-positive rates (FPR) values from this analysis revealed a strong correlation with CD4 T cell recovery (p < 0.0001). Transmitted drug resistance mutations, documented in 3/41 (7.3%) cases, were unrelated to the assigned antiretroviral regimen and had no impact on patient outcomes. In conclusion, naÏve HIV-1 R5 infected patients exhibited higher CD4 T cell counts at baseline; this difference was sustained throughout therapy. The geno2pheno[clinical] option FPR positively correlated with CD4 T cell gain and may be useful in predicting CD4 T cell recovery.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Background Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. Methods Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. Results Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. Conclusion Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Saliva is a key element of interaction between hematophagous mosquitoes and their vertebrate hosts. In addition to allowing a successful blood meal by neutralizing or delaying hemostatic responses, the salivary cocktail is also able to modulate the effector mechanisms of host immune responses facilitating, in turn, the transmission of several types of microorganisms. Understanding how the mosquito uses its salivary components to circumvent host immunity might help to clarify the mechanisms of transmission of such pathogens and disease establishment. METHODS: Flow cytometry was used to evaluate if increasing concentrations of A. aegypti salivary gland extract (SGE) affects bone marrow-derived DC differentiation and maturation. Lymphocyte proliferation in the presence of SGE was estimated by a colorimetric assay. Western blot and Annexin V staining assays were used to assess apoptosis in these cells. Naïve and memory cells from mosquito-bite exposed mice or OVA-immunized mice and their respective controls were analyzed by flow cytometry. RESULTS: Concentration-response curves were employed to evaluate A. aegypti SGE effects on DC and lymphocyte biology. DCs differentiation from bone marrow precursors, their maturation and function were not directly affected by A. aegypti SGE (concentrations ranging from 2.5 to 40 μg/mL). On the other hand, lymphocytes were very sensitive to the salivary components and died in the presence of A. aegypti SGE, even at concentrations as low as 0.1 μg/mL. In addition, A. aegypti SGE was shown to induce apoptosis in all lymphocyte populations evaluated (CD4+ and CD8+ T cells, and B cells) through a mechanism involving caspase-3 and caspase-8, but not Bim. By using different approaches to generate memory cells, we were able to verify that these cells are resistant to SGE effects. CONCLUSION: Our results show that lymphocytes, and not DCs, are the primary target of A. aegypti salivary components. In the presence of A. aegypti SGE, naïve lymphocyte populations die by apoptosis in a caspase-3- and caspase-8-dependent pathway, while memory cells are selectively more resistant to its effects. The present work contributes to elucidate the activities of A. aegypti salivary molecules on the antigen presenting cell-lymphocyte axis and in the biology of these cells.