24 resultados para DAE
Resumo:
A systematic study is presented for centrality, transverse momentum (p(T)), and pseudorapidity (eta) dependence of the inclusive charged hadron elliptic flow (v(2)) at midrapidity (vertical bar eta vertical bar < 1.0) in Au + Au collisions at root s(NN) = 7.7, 11.5, 19.6, 27, and 39 GeV. The results obtained with different methods, including correlations with the event plane reconstructed in a region separated by a large pseudorapidity gap and four-particle cumulants (v(2){4}), are presented to investigate nonflow correlations and v(2) fluctuations. We observe that the difference between v(2){2} and v(2){4} is smaller at the lower collision energies. Values of v(2), scaled by the initial coordinate space eccentricity, v(2)/epsilon, as a function of p(T) are larger in more central collisions, suggesting stronger collective flow develops in more central collisions, similar to the results at higher collision energies. These results are compared to measurements at higher energies at the Relativistic Heavy Ion Collider (root s(NN) = 62.4 and 200 GeV) and at the Large Hadron Collider (Pb + Pb collisions at root s(NN) = 2.76 TeV). The v(2)(pT) values for fixed pT rise with increasing collision energy within the pT range studied (<2 GeV/c). A comparison to viscous hydrodynamic simulations is made to potentially help understand the energy dependence of v(2)(pT). We also compare the v(2) results to UrQMD and AMPT transport model calculations, and physics implications on the dominance of partonic versus hadronic phases in the system created at beam energy scan energies are discussed.
Resumo:
The magnetic moments of the low-lying spin-parity J(P) = 1/2(-), 3/2(-) Lambda resonances, like, for example, Lambda(1405) 1/2(-), Lambda(1520) 3/2(-), as well as their transition magnetic moments, are calculated using the chiral quark model. The results found are compared with those obtained from the nonrelativistic quark model and those of unitary chiral theories, where some of these states are generated through the dynamics of two hadron coupled channels and their unitarization.
Resumo:
We present STAR measurements of azimuthal anisotropy by means of the two- and four-particle cumulants nu(2) (nu(2){2} and nu(2){4}) for Au + Au and Cu + Cu collisions at center-of-mass energies root S-NN = 62.4 and 200 GeV. The difference between nu(2){2}(2) and nu(2){4}(2) is related to nu(2) fluctuations (sigma(nu 2)) and nonflow (delta(2)). We present an upper limit to sigma(nu 2)/nu 2. Following the assumption that eccentricity fluctuations sigma(epsilon) dominate nu(2) fluctuations nu(2)/sigma nu(2) approximate to epsilon/sigma epsilon we deduce the nonflow implied for several models of eccentricity fluctuations that would be required for consistency with nu(2){2} and nu(2){4}. We also present results on the ratio of nu(2) to eccentricity.
Resumo:
The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at root s = 7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L-int = 5.6 nb(-1). The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p(t) > 1,3 GeV/c and rapidity vertical bar y vertical bar < 0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the psi(2S) and chi(c) resonances, is sigma(prompt J/psi) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 8.3 +/- 0.8(stat.) +/- 1.1 (syst.)(-1.4)(+1.5) (syst. pol.) mu b. The cross section for the production of b-hadrons decaying to J/psi with p(t) > 1.3 GeV/c and vertical bar y vertical bar < 0.9 is a sigma(J/psi <- hB) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 1.46 +/- 0.38 (stat.)(-0.32)(+0.26) (syst.) mu b. The results are compared to QCD model predictions. The shape of the p(t) and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b (b) over bar pair total cross section and d sigma/dy at mid-rapidity.
Resumo:
STAR's measurements of directed flow (v(1)) around midrapidity for pi(+/-), K-+/-, K-S(0), p, and (p) over bar in Au + Au collisions at root s(NN) = 200 GeV are presented. A negative v(1) (y) slope is observed for most of produced particles (pi(+/-), K-+/-, K-S(0), p, and (p) over bar). In 5%-30% central collisions, a sizable difference is present between the v(1)(y) slope of protons and antiprotons, with the former being consistent with zero within errors. The v(1) excitation function is presented. Comparisons to model calculations (RQMD, UrQMD, AMPT, QGSM with parton recombination, and a hydrodynamics model with a tilted source) are made. For those models which have calculations of v(1) for both pions and protons, none of them can describe v(1()y) forpions and protons simultaneously. The hydrodynamics model with a tilted source as currently implemented cannot explain the centrality dependence of the difference between the v(1)(y) slopes of protons and antiprotons.
Resumo:
It is a well-established fact that statistical properties of energy-level spectra are the most efficient tool to characterize nonintegrable quantum systems. The statistical behavior of different systems such as complex atoms, atomic nuclei, two-dimensional Hamiltonians, quantum billiards, and noninteracting many bosons has been studied. The study of statistical properties and spectral fluctuations in interacting many-boson systems has developed interest in this direction. We are especially interested in weakly interacting trapped bosons in the context of Bose-Einstein condensation (BEC) as the energy spectrum shows a transition from a collective nature to a single-particle nature with an increase in the number of levels. However this has received less attention as it is believed that the system may exhibit Poisson-like fluctuations due to the existence of an external harmonic trap. Here we compute numerically the energy levels of the zero-temperature many-boson systems which are weakly interacting through the van der Waals potential and are confined in the three-dimensional harmonic potential. We study the nearest-neighbor spacing distribution and the spectral rigidity by unfolding the spectrum. It is found that an increase in the number of energy levels for repulsive BEC induces a transition from a Wigner-like form displaying level repulsion to the Poisson distribution for P(s). It does not follow the Gaussian orthogonal ensemble prediction. For repulsive interaction, the lower levels are correlated and manifest level-repulsion. For intermediate levels P(s) shows mixed statistics, which clearly signifies the existence of two energy scales: external trap and interatomic interaction, whereas for very high levels the trapping potential dominates, generating a Poisson distribution. Comparison with mean-field results for lower levels are also presented. For attractive BEC near the critical point we observe the Shnirelman-like peak near s = 0, which signifies the presence of a large number of quasidegenerate states.
Resumo:
Measurements of the differential cross section and the transverse single-spin asymmetry, A(N), vs x(F) for pi(0) and eta mesons are reported for 0.4 < x(F) < 0.75 at an average pseudorapidity of 3.68. A data sample of approximately 6.3 pb(-1) was analyzed, which was recorded during p(up arrow) + p collisions at root s = 200 GeV by the STAR experiment at RHIC. The average transverse beam polarization was 56%. The cross section for pi(0), including the previously unmeasured region of x(F) > 0.55, is consistent with a perturbative QCD prediction, and the eta/pi(0) cross-section ratio agrees with existing midrapidity measurements. For 0.55 < x(F) < 0.75, the average A(N) for eta is 0.210 +/- 0.056, and that for pi(0) is 0.081 +/- 0.016. The probability that these two asymmetries are equal is similar to 3%.
Resumo:
Chlorophyll determination with a portable chlorophyll meter can indicate the period of highest N demand of plants and whether sidedressing is required or not. In this sense, defining the optimal timing of N application to common bean is fundamental to increase N use efficiency, increase yields and reduce the cost of fertilization. The objectives of this study were to evaluate the efficiency of N sufficiency index (NSI) calculated based on the relative chlorophyll index (RCI) in leaves, measured with a portable chlorophyll meter, as an indicator of time of N sidedressing fertilization and to verify which NSI (90 and 95 %) value is the most appropriate to indicate the moment of N fertilization of common bean cultivar Perola. The experiment was carried out in the rainy and dry growing seasons of the agricultural year 2009/10 on a dystroferric Red Nitosol, in Botucatu, São Paulo State, Brazil. The experiment was arranged in a randomized complete block design with five treatments, consisting of N managements (M1: 200 kg ha-1 N (40 kg at sowing + 80 kg 15 days after emergence (DAE) + 80 kg 30 DAE); M2: 100 kg ha-1 N (20 kg at sowing + 40 kg 15 DAE + 40 kg 30 DAE); M3: 20 kg ha-1 N at sowing + 30 kg ha-1 when chlorophyll meter readings indicated NSI < 95 %; M4: 20 kg ha-1 N at sowing + 30 kg ha-1 N when chlorophyll meter readings indicated NSI < 90 % and, M5: control (without N application)) and four replications. The variables RCI, aboveground dry matter, total leaf N concentration, production components, grain yield, relative yield, and N use efficiency were evaluated. The RCI correlated with leaf N concentrations. By monitoring the RCI with the chlorophyll meter, the period of N sidedressing of common bean could be defined, improving N use efficiency and avoiding unnecessary N supply to common bean. The NSI 90 % of the reference area was more efficient to define the moment of N sidedressing of common bean, to increase N use efficiency.
Resumo:
O processo MBBR/IFAS, Moving Bed Biofilm Reactor/Integrated Fixed Film Activated Sludge, é uma tecnologia recente para o tratamento de esgoto que incorpora tanto biomassa em suspensão como aderida. Seus parâmetros de controle são os mesmos aplicados ao processo de lodo ativado, observadas algumas especificidades. Como objetivo principal deste trabalho, apresenta-se uma análise comparativa entre os custos de implantação de uma unidade IFAS e de lodo ativado operando sob alta taxa, na faixa convencional e com aeração prolongada, para populações de 50.000 e 500.000 habitantes. Os resultados mostraram que, sob as hipóteses assumidas para a implantação dos reatores, o custo do processo de lodo ativado foi de 36% até 100% do custo do processo IFAS, dependendo da carga orgânica aplicada, do preço do terreno ou do custo do meio suporte.