25 resultados para Coprocessing of vacuum gas oil
Resumo:
The aim of this study was to evaluate the physicochemical properties of avocado pulp of four different varieties (Avocado, Guatemala, Dickinson, and Butter pear) and to identify which has the greatest potential for oil extraction. Fresh avocado pulp was characterized by moisture, protein, fat, ash, carbohydrates and energy contents were determined. The carotenoids and chlorophyll contents were determined by the organic solvent extraction method. The results showed significant differences in the composition of the fruit when varieties are compared. However, the striking feature in all varieties is high lipid content; Avocado and Dickinson are the most suitable varieties for oil extraction, taking into account moisture content and the levels of lipids in the pulp. Moreover, it could be said that the variety Dickinson is the most affected by the parameters evaluated in terms of overall quality. Chlorophyll and carotenoids, fat-soluble pigments, showed a negative correlation with respect to lipids since it could be related to its function in the fruit. The varieties Avocado and Dickinson are an alternative to oil extraction having great commercial potential to be exploited thus avoiding waste and increasing farmers income.
Resumo:
The in vitro schistosomicidal effects of the essential oil obtained from Tagetes erecta L. Asteraceae, leaves (TE-EO) collected in Brazil against Schistosoma mansoni worms are reported in this paper. The oil caused a significant decrease in the motor activity at 50 µg/mL as minimal concentration after 24 h. This oil also caused death of all the parasites and the separation of coupled pairs into individual male and female at 100 µg/mL after 24 h. The viability of adult worm groups treated with the TE-EO at 100 µg/mL was similar to that of groups treated with praziquantel (positive control). In addition, the oil promoted the inhibition of eggs development at all the tested concentrations. These data indicate that the TE-EO could be considered as a promising source for the development of new schistosomicidal agents.
Resumo:
This study aimed to enumerate and identify lactic acid bacteria and Enterobacteriaceae from spoiled and nonspoiled chilled vacuum-packaged beef and determine their potential to cause blown pack spoilage. These microbial groups were also enumerated in nonspoiled samples and detected in abattoir samples. The potential of isolates to cause blown pack spoilage of vacuum-packaged beef stored at chilled temperature (4 degrees C) and abuse temperature (15 degrees C) was investigated. Populations of lactic acid bacteria in exudate of spoiled and nonspoiled samples were not significantly different (P > 0.05), whereas the number of lactic acid bacteria on the surface was significantly higher (P < 0.05) in spoiled samples as compared to nonspoiled samples. The population of Enterobacteriaceae species in exudate and on the surface of samples were significantly higher (P < 0.05) in spoiled packs in comparison with nonspoiled packs. Results of the deterioration potential showed that blown pack spoilage was noticeable after 7 days at 15 degrees C and after 6 weeks at 4 degrees C for samples inoculated with Hafnia alvei.
Resumo:
RATIONALE: Oxazolines have attracted the attention of researchers worldwide due to their versatility as carboxylic acid protecting groups, chiral auxiliaries, and ligands for asymmetric catalysis. Electrospray ionization tandem mass spectrometric (ESI-MS/MS) analysis of five 2-oxazoline derivatives has been conducted, in order to understand the influence of the side chain on the gas-phase dissociation of these protonated compounds under collision-induced dissociation (CID) conditions. METHODS: Mass spectrometric analyses were conducted in a quadrupole time-of-flight (Q-TOF) spectrometer fitted with electrospray ionization source. Protonation sites have been proposed on the basis of the gas-phase basicity, proton affinity, atomic charges, and a molecular electrostatic potential map obtained on the basis of the quantum chemistry calculations at the B3LYP/6-31 + G(d, p) and G2(MP2) levels. RESULTS: Analysis of the atomic charges, gas-phase basicity and proton affinities values indicates that the nitrogen atom is a possible proton acceptor site. On the basis of these results, two main fragmentation processes have been suggested: one taking place via neutral elimination of the oxazoline moiety (99 u) and another occurring by sequential elimination of neutral fragments with 72 u and 27 u. These processes should lead to formation of R+. CONCLUSIONS: The ESI-MS/MS experiments have shown that the side chain could affect the dissociation mechanism of protonated 2-oxazoline derivatives. For the compound that exhibits a hydroxyl at the lateral chain, water loss has been suggested to happen through an E2-type elimination, in an exothermic step. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
This study determined the ability of psychrotrophic Clostridium strains isolated from vacuum-packaged beefs and abattoir environments to cause 'blown-pack' spoilage of vacuum-packaged beef stored at 2 and 15 degrees C. The influence of shrinking temperatures (83, 84 and 87 degrees C) and vacuum pressure (6 and 9 mbar) on the occurrence of such spoilage as well as the effects of simulated transportation (500 km) on the integrity of packages was determined. At 15 degrees C and 2 degrees C, twelve and six strains caused 'blown-pack' spoilage, respectively. The combination of vacuum pressure (9 mbar) combined with shrinking temperature (87 degrees C) retarded the occurrence of spoilage. The simulated transportation under the experimental conditions did not affect the integrity of packages. More studies that assess the factors that may contribute for the occurrence of 'blown-pack' spoilage should be performed to avoid the occurrence of such spoilage during its shelf-life. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Oil content and grain yield in maize are negatively correlated, and so far the development of high-oil high-yielding hybrids has not been accomplished. Then a fully understand of the inheritance of the kernel oil content is necessary to implement a breeding program to improve both traits simultaneously. Conventional and molecular marker analyses of the design III were carried out from a reference population developed from two tropical inbred lines divergent for kernel oil content. The results showed that additive variance was quite larger than the dominance variance, and the heritability coefficient was very high. Sixteen QTL were mapped, they were not evenly distributed along the chromosomes, and accounted for 30.91% of the genetic variance. The average level of dominance computed from both conventional and QTL analysis was partial dominance. The overall results indicated that the additive effects were more important than the dominance effects, the latter were not unidirectional and then heterosis could not be exploited in crosses. Most of the favorable alleles of the QTL were in the high-oil parental inbred, which could be transferred to other inbreds via marker-assisted backcross selection. Our results coupled with reported information indicated that the development of high-oil hybrids with acceptable yields could be accomplished by using marker-assisted selection involving oil content, grain yield and its components. Finally, to exploit the xenia effect to increase even more the oil content, these hybrids should be used in the Top Cross((TM)) procedure.
Resumo:
The use of the core-annular flow pattern, where a thin fluid surrounds a very viscous one, has been suggested as an attractive artificial-lift method for heavy oils in the current Brazilian ultra-deepwater production scenario. This paper reports the pressure drop measurements and the core-annular flow observed in a 2 7/8-inch and 300 meter deep pilot-scale well conveying a mixture of heavy crude oil (2000 mPa.s and 950 kg/m3 at 35 C) and water at several combinations of the individual flow rates. The two-phase pressure drop data are compared with those of single-phase oil flow to assess the gains due to water injection. Another issue is the handling of the core-annular flow once it has been established. High-frequency pressure-gradient signals were collected and a treatment based on the Gabor transform together with neural networks is proposed as a promising solution for monitoring and control. The preliminary results are encouraging. The pilot-scale tests, including long-term experiments, were conducted in order to investigate the applicability of using water to transport heavy oils in actual wells. It represents an important step towards the full scale application of the proposed artificial-lift technology. The registered improvements in terms of oil production rate and pressure drop reductions are remarkable.
Resumo:
A mathematical model and numerical simulations are presented to investigate the dynamics of gas, oil and water flow in a pipeline-riser system. The pipeline is modeled as a lumped parameter system and considers two switchable states: one in which the gas is able to penetrate into the riser and another in which there is a liquid accumulation front, preventing the gas from penetrating the riser. The riser model considers a distributed parameter system, in which movable nodes are used to evaluate local conditions along the subsystem. Mass transfer effects are modeled by using a black oil approximation. The model predicts the liquid penetration length in the pipeline and the liquid level in the riser, so it is possible to determine which type of severe slugging occurs in the system. The method of characteristics is used to simplify the differentiation of the resulting hyperbolic system of equations. The equations are discretized and integrated using an implicit method with a predictor-corrector scheme for the treatment of the nonlinearities. Simulations corresponding to severe slugging conditions are presented and compared to results obtained with OLGA computer code, showing a very good agreement. A description of the types of severe slugging for the three-phase flow of gas, oil and water in a pipeline-riser system with mass transfer effects are presented, as well as a stability map. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We studied the physical and chemical characteristics of methyl and ethyl esters (biodiesel) produced by transesterification of pequi oil (Caryocar brasiliensis Camb.) in the presence of potassium hydroxide. The oil extracted from pequi seed comprises 60% of the fruit content. Such characteristics as density, acidity, viscosity, and carbon residue of the biodiesel meet ANP (Brazilian National Petroleum Agency) standards. Our tests demonstrated the feasibility of utilizing pequi oil for biodiesel production.
Resumo:
This work reports the chemical characterization of Eremanthusgoyzensis essential oil and its toxic effect over Brevipalpus phoenicis. The essential oil displayed a major composition of sesquiterpenes (61.87%) including trans-caryophillene (26.81%) and germacrene-D (13.31%). The fumigation test indicated a promising bioactivity over adult B. phoenicis individuals at 24 h (2.03 µL/L of air) and 48 h (1.08 µL/L of air) of exposition. A brief discussion of essential oils composition and their singular role on the toxic effect over B. phoenicis is provided here. Our results may contribute to a new and profitable use of a species of Brazilian flora on agribusiness.