21 resultados para Contractile-force


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Post-rest contraction (PRC) of cardiac muscle provides indirect information about the intracellular calcium handling. Objective: Our aim was to study the behavior of PRC, and its underlying mechanisms, in rats with myocardial infarction. Methods: Six weeks after coronary occlusion, the contractility of papillary muscles (PM) obtained from sham-operated (C, n = 17), moderate infarcted (MMI, n = 10) and large infarcted (LMI, n = 14) rats was evaluated, following rest intervals of 10 to 60 seconds before and after incubation with lithium chloride (Li+) substituting sodium chloride or ryanodine (Ry). Protein expression of SR Ca(2+)-ATPase (SERCA2), Na+/Ca2+ exchanger (NCX), phospholamban (PLB) and phospho-Ser(16)-PLB were analyzed by Western blotting. Results: MMI exhibited reduced PRC potentiation when compared to C. Opposing the normal potentiation for C, post-rest decays of force were observed in LMI muscles. In addition, Ry blocked PRC decay or potentiation observed in LMI and C; Li+ inhibited NCX and converted PRC decay to potentiation in LMI. Although MMI and LMI presented decreased SERCA2 (72 +/- 7% and 47 +/- 9% of Control, respectively) and phospho-Ser(16)-PLB (75 +/- 5% and 46 +/- 11%, respectively) protein expression, overexpression of NCX (175 +/- 20%) was only observed in LMI muscles. Conclusion: Our results showed, for the first time ever, that myocardial remodeling after MI in rats may change the regular potentiation to post-rest decay by affecting myocyte Ca(2+) handling proteins. (Arq Bras Cardiol 2012;98(3):243-251)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Motoneuron (MN) dendrites may be changed from a passive to an active state by increasing the levels of spinal cord neuromodulators, which activate persistent inward currents (PICs). These exert a powerful influence on MN behavior and modify the motor control both in normal and pathological conditions. Motoneuronal PICs are believed to induce nonlinear phenomena such as the genesis of extra torque and torque hysteresis in response to percutaneous electrical stimulation or tendon vibration in humans. An existing large-scale neuromuscular simulator was expanded to include MN models that have a capability to change their dynamic behaviors depending on the neuromodulation level. The simulation results indicated that the variability (standard deviation) of a maintained force depended on the level of neuromodulatory activity. A force with lower variability was obtained when the motoneuronal network was under a strong influence of PICs, suggesting a functional role in postural and precision tasks. In an additional set of simulations when PICs were active in the dendrites of the MN models, the results successfully reproduced experimental results reported from humans. Extra torque was evoked by the self-sustained discharge of spinal MNs, whereas differences in recruitment and de-recruitment levels of the MNs were the main reason behind torque and electromyogram (EMG) hysteresis. Finally, simulations were also used to study the influence of inhibitory inputs on a MN pool that was under the effect of PICs. The results showed that inhibition was of great importance in the production of a phasic force, requiring a reduced co-contraction of agonist and antagonist muscles. These results show the richness of functionally relevant behaviors that can arise from a MN pool under the action of PICs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: To evaluate the dentoskeletal changes of Class II malocclusion treatment with the Twin Force Bite Corrector (TFBC). Materials and Methods: The sample comprised 86 lateral cephalograms obtained from 43 subjects with Class II division 1 malocclusion; the subjects were divided into two groups. The experimental group comprised 23 patients with a mean initial age of 12.11 years who were treated with the TFBC for a mean period of 2.19 years. The control group included 40 lateral cephalograms from 20 Class II nontreated patients, with an initial mean age of 12.55 years and a mean observation period of 2.19 years. The lateral cephalograms were evaluated before and after orthodontic treatment in group 1 and in the beginning and end of the observation period in group 2. t-Tests were used to compare the initial and final cephalometric characteristics of the groups as well as the amount of change. Results: The experimental group presented greater maxillary growth restriction and mandibular retrusion than the control group, as well as greater maxillomandibular relationship improvement and greater labial tipping of the mandibular incisors. The results also showed a greater decrease in overbite and overjet in the experimental group, and there were no statistically significant differences in the craniofacial growth pattern between groups. Conclusions: The TFBC promotes restriction of anterior maxillary displacement without significant changes in mandibular length and position and improvement of maxillomandibular relationship without changes in facial growth and significant buccal tipping of mandibular incisors. Class II correction with the TFBC occurred primarily as a result of dentoalveolar changes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: High-frequency trains of electrical stimulation applied over the human muscles can generate forces higher than would be expected by direct activation of motor axons, as evidenced by an unexpected relation between the stimuli and the evoked contractions, originating what has been called “extra forces”. This phenomenon has been thought to reflect nonlinear input/output neural properties such as plateau potential activation in motoneurons. However, more recent evidence has indicated that extra forces generated during electrical stimulation are mediated primarily, if not exclusively, by an intrinsic muscle property, and not from a central mechanism as previously thought. Given the inherent differences between electrical and vibratory stimuli, this study aimed to investigate: (a) whether the generation of vibration-induced muscle forces results in an unexpected relation between the stimuli and the evoked contractions (i.e. extra forces generation) and (b) whether these extra forces are accompanied by signs of a centrally-mediated mechanism or whether intrinsic muscle properties are the redominant mechanisms. Methods: Six subjects had their Achilles tendon stimulated by 100 Hz vibratory stimuli that linearly increased in amplitude (with a peak-to-peak displacement varying from 0 to 5 mm) for 10 seconds and then linearly decreased to zero for the next 10 seconds. As a measure of motoneuron excitability taken at different times during the vibratory stimulation, short-latency compound muscle action potentials (V/F-waves) were recorded in the soleus muscle in response to supramaximal nerve stimulation. Results: Plantar flexion torque and soleus V/F-wave amplitudes were increased in the second half of the stimulation in comparison with the first half. Conclusion: The present findings provide evidence that vibratory stimuli may trigger a centrally-mediated mechanism that contributes to the generation of extra torques. The vibration-induced increased motoneuron excitability (leading to increased torque generation) presumably activates spinal motoneurons following the size principle, which is a desirable feature for stimulation paradigms involved in rehabilitation programs and exercise training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reinforced concrete beam elements are submitted to applicable loads along their life cycle that cause shear and torsion. These elements may be subject to only shear, pure torsion or both, torsion and shear combined. The Brazilian Standard Code ABNT NBR 6118:2007 [1] fixes conditions to calculate the transverse reinforcement area in beam reinforced concrete elements, using two design models, based on the strut and tie analogy model, first studied by Mörsch [2]. The strut angle θ (theta) can be considered constant and equal to 45º (Model I), or varying between 30º and 45º (Model II). In the case of transversal ties (stirrups), the variation of angle α (alpha) is between 45º and 90º. When the equilibrium torsion is required, a resistant model based on space truss with hollow section is considered. The space truss admits an inclination angle θ between 30º and 45º, in accordance with beam elements subjected to shear. This paper presents a theoretical study of models I and II for combined shear and torsion, in which ranges the geometry and intensity of action in reinforced concrete beams, aimed to verify the consumption of transverse reinforcement in accordance with the calculation model adopted As the strut angle on model II ranges from 30º to 45º, transverse reinforcement area (Asw) decreases, and total reinforcement area, which includes longitudinal torsion reinforcement (Asℓ), increases. It appears that, when considering model II with strut angle above 40º, under shear only, transverse reinforcement area increases 22% compared to values obtained using model I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: This study aimed to evaluate the cephalometric effects promoted by the orthodontic treatment of Class II malocclusion patients with the use of the 10-Hour Force Theory, that consists in the use of fixed appliances with 8 hours a day using a cervical headgear appliance and 16 hours a day using Class II elastics, 8 hours on the first mandibular molar and 8 hours in the second mandibular molar. METHODS: Sample comprised 31 patients with mean initial age of 14.90 years, final mean age of 17.25 years and mean treatment time of 2.35 years. The lateral cephalograms in pre-treatment and post-treatment stages were evaluated. Evaluation of cephalometric changes between initial and final treatment phases was performed by paired t test. RESULTS: The cases treated with the 10-Hour Force Theory presented a slight restriction of anterior displacement of the maxilla, increase in the effective length of the mandible, significant improvement of the maxillomandibular relationship, significant increase in anterior lower face height, distal tipping of the maxillary premolar crowns, extrusion and distal tipping of the roots of maxillary molars, significant proclination and protrusion of mandibular incisors, significant extrusion and mesialization of mandibular molars, besides a significant correction of the molar relationship, overjet and overbite. CONCLUSION: The use of the 10-Hour Force Theory in treatment of Class II malocclusion provided satisfactory results.