19 resultados para Conservation of biodiversity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Biological invasions are one of the major causes of biodiversity loss, yet remain rather understudied in tropical environments. The Australian palm tree Archontophoenix cunninghamiana was introduced into Brazil for ornamental purposes, but has become an invasive species in urban and suburban forest patches. The substitution of A. cunninghamiana by the native palm Euterpe edulis has been proposed as a management action. Aims: We aimed to evaluate the regeneration potential of these two palm species in an Atlantic forest remnant in south-eastern Brazil where both species occur. Methods: We compared seedling establishment and seed longevity of both species through seed sowing, and also measured the contribution of A. cunninghamiana to the local seed rain and seed bank. Results: Nearly half of the non-anemochoric diaspores collected from the seed rain belonged to A. cunninghamiana, which represented a high propagule pressure in the community. The distribution of the alien palm seeds in the seed rain correlated with the distribution of nearby young and adult individuals inside the forest. Neither A. cunninghamiana nor E. edulis appeared to have a persistent seed bank in a burial experiment; seedling survival experiments suggested a much better performance for A. cunninghamiana, which had a survival rate of ca. 30% compared with a rate of only 3.5% for E. edulis. Conclusions: The results suggest a higher regeneration capacity for the alien palm over the native species when co-occurring in a forest fragment. Management actions are thus proposed to reduce a potential biological invasion process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trampling by human visitors to rocky shores is a known stressor on macroorganisms. However, the effects of trampling on rocky intertidal biofilm, a complex association of microorganisms of ecological importance in coastal communities, have not been quantified. We evaluated the impact of trampling frequency and intensity on total biomass of epilithic microalgae on intertidal rocky shores in the southeast of Brazil. There was a trend of increase in the variability of biomass of biofilm in function of intensity of trampling, but no significant effects emerged among trampling treatments. The low influence of trampling on biofilm might be a result of the small dimensions of the organisms coupled with their natural resilience and roughness of the substrate; the former preventing the removal of biofilm layers by shoes and facilitating their quick recovery. Our results provide insights for management and conservation of coastal ecosystems revealing a weaker impact of trampling on biofilm than that reported on macroorganisms. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The need for biodiversity conservation is increasing at a rate much faster than the acquisition of knowledge of biodiversity, such as descriptions of new species and mapping species distributions. As global changes are winning the race against the acquisition of knowledge, many researchers resort to the use of surrogate groups to aid in conservation decisions. Reductions in taxonomic and numerical resolution are also desirable, because they could allow more rapid the acquisition of knowledge while requiring less effort, if little important information is lost. In this study, we evaluated the congruence among 22 taxonomic groups sampled in a tropical forest in the Amazon basin. Our aim was to evaluate if any of these groups could be used as surrogates for the others in monitoring programs. We also evaluated if the taxonomic or numerical resolution of possible surrogates could be reduced without greatly reducing the overall congruence. Congruence among plant groups was high, whereas the congruence among most animal groups was very low, except for anurans in which congruence values were only slightly lower than for plants. Liana (Bignoniaceae) was the group with highest congruence, even using genera presence-absence data. The congruence among groups was related to environmental factors, specifically the clay and phosphorous contents of soil. Several groups showed strong spatial clumping, but this was unrelated to the congruence among groups. The high degree of congruence of lianas with the other groups suggests that it may be a reasonable surrogate group, mainly for the other plant groups analyzed, if soil data are not available. Although lianas are difficult to count and identify, the number of studies on the ecology of lianas is increasing. Most of these studies have concluded that lianas are increasing in abundance in tropical forests. In addition to the high congruence, lianas are worth monitoring in their own right because they are sensitive to global warming and the increasing frequency and severity of droughts in tropical regions. Our findings suggest that the use of data on surrogate groups with relatively low taxonomic and numerical resolutions can be a reliable shortcut for biodiversity assessments, especially in megadiverse areas with high rates of habitat conversion, where the lack of biodiversity knowledge is pervasive. (c) 2012 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The maintenance of biodiversity is a long standing puzzle in ecology. It is a classical result that if the interactions of the species in an ecosystem are chosen in a random way, then complex ecosystems can't sustain themselves, meaning that the structure of the interactions between the species must be a central component on the preservation of biodiversity and on the stability of ecosystems. The rock-paper-scissors model is one of the paradigmatic models that study how biodiversity is maintained. In this model 3 species dominate each other in a cyclic way (mimicking a trophic cycle), that is, rock dominates scissors, that dominates paper, that dominates rock. In the original version of this model, this dominance obeys a 'Z IND 3' symmetry, in the sense that the strength of dominance is always the same. In this work, we break this symmetry, studying the effects of the addition of an asymmetry parameter. In the usual model, in a two dimensional lattice, the species distribute themselves according to spiral patterns, that can be explained by the complex Landau-Guinzburg equation. With the addition of asymmetry, new spatial patterns appear during the transient and the system either ends in a state with spirals, similar to the ones of the original model, or in a state where unstable spatial patterns dominate or in a state where only one species survives (and biodiversity is lost).