25 resultados para Computational Geometry and Object Modeling
Resumo:
In protein databases there is a substantial number of proteins structurally determined but without function annotation. Understanding the relationship between function and structure can be useful to predict function on a large scale. We have analyzed the similarities in global physicochemical parameters for a set of enzymes which were classified according to the four Enzyme Commission (EC) hierarchical levels. Using relevance theory we introduced a distance between proteins in the space of physicochemical characteristics. This was done by minimizing a cost function of the metric tensor built to reflect the EC classification system. Using an unsupervised clustering method on a set of 1025 enzymes, we obtained no relevant clustering formation compatible with EC classification. The distance distributions between enzymes from the same EC group and from different EC groups were compared by histograms. Such analysis was also performed using sequence alignment similarity as a distance. Our results suggest that global structure parameters are not sufficient to segregate enzymes according to EC hierarchy. This indicates that features essential for function are rather local than global. Consequently, methods for predicting function based on global attributes should not obtain high accuracy in main EC classes prediction without relying on similarities between enzymes from training and validation datasets. Furthermore, these results are consistent with a substantial number of studies suggesting that function evolves fundamentally by recruitment, i.e., a same protein motif or fold can be used to perform different enzymatic functions and a few specific amino acids (AAs) are actually responsible for enzyme activity. These essential amino acids should belong to active sites and an effective method for predicting function should be able to recognize them. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this paper is to present some reflections on possibilities to investigate everyday life by examining ways of life, so as to broaden perspectives to the field of research in public health, in light of the fact that the study of daily ways of life involves the analysis of trajectories that contextualize routines, interactions and meanings of life. This allows the social researcher in the health field to have, based on a theoretical framework, a flexible methodology that offers mobility in the choice of the technique that best favors the understanding of the issue to be investigated. We have here, as a conceptual reference, the idea of everyday life investigated from interactive processes and contexts, as opposed to a categorial objectification between subject and object. In this context, from the theoretical reflection, we take, as the research's empirical reference, the waiting room of the outpatient clinic of the Osteoarticular Metabolism Department of a Health Care Unit in the city of Fortaleza/, Northeastern Brazil, in order to foster an interpretive understanding of the daily routine that involves the life and health situations of women with osteoporosis.
Resumo:
Abstract Background The sequencing of the D.melanogaster genome revealed an unexpected small number of genes (~ 14,000) indicating that mechanisms acting on generation of transcript diversity must have played a major role in the evolution of complex metazoans. Among the most extensively used mechanisms that accounts for this diversity is alternative splicing. It is estimated that over 40% of Drosophila protein-coding genes contain one or more alternative exons. A recent transcription map of the Drosophila embryogenesis indicates that 30% of the transcribed regions are unannotated, and that 1/3 of this is estimated as missed or alternative exons of previously characterized protein-coding genes. Therefore, the identification of the variety of expressed transcripts depends on experimental data for its final validation and is continuously being performed using different approaches. We applied the Open Reading Frame Expressed Sequence Tags (ORESTES) methodology, which is capable of generating cDNA data from the central portion of rare transcripts, in order to investigate the presence of hitherto unnanotated regions of Drosophila transcriptome. Results Bioinformatic analysis of 1,303 Drosophila ORESTES clusters identified 68 sequences derived from unannotated regions in the current Drosophila genome version (4.3). Of these, a set of 38 was analysed by polyA+ northern blot hybridization, validating 17 (50%) new exons of low abundance transcripts. For one of these ESTs, we obtained the cDNA encompassing the complete coding sequence of a new serine protease, named SP212. The SP212 gene is part of a serine protease gene cluster located in the chromosome region 88A12-B1. This cluster includes the predicted genes CG9631, CG9649 and CG31326, which were previously identified as up-regulated after immune challenges in genomic-scale microarray analysis. In agreement with the proposal that this locus is co-regulated in response to microorganisms infection, we show here that SP212 is also up-regulated upon injury. Conclusion Using the ORESTES methodology we identified 17 novel exons from low abundance Drosophila transcripts, and through a PCR approach the complete CDS of one of these transcripts was defined. Our results show that the computational identification and manual inspection are not sufficient to annotate a genome in the absence of experimentally derived data.
Resumo:
Abstract Background MicroRNAs (miRNAs) are small regulatory RNAs, some of which are conserved in diverse plant genomes. Therefore, computational identification and further experimental validation of miRNAs from non-model organisms is both feasible and instrumental for addressing miRNA-based gene regulation and evolution. Sugarcane (Saccharum spp.) is an important biofuel crop with publicly available expressed sequence tag and genomic survey sequence databases, but little is known about miRNAs and their targets in this highly polyploid species. Results In this study, we have computationally identified 19 distinct sugarcane miRNA precursors, of which several are highly similar with their sorghum homologs at both nucleotide and secondary structure levels. The accumulation pattern of mature miRNAs varies in organs/tissues from the commercial sugarcane hybrid as well as in its corresponding founder species S. officinarum and S. spontaneum. Using sugarcane MIR827 as a query, we found a novel MIR827 precursor in the sorghum genome. Based on our computational tool, a total of 46 potential targets were identified for the 19 sugarcane miRNAs. Several targets for highly conserved miRNAs are transcription factors that play important roles in plant development. Conversely, target genes of lineage-specific miRNAs seem to play roles in diverse physiological processes, such as SsCBP1. SsCBP1 was experimentally confirmed to be a target for the monocot-specific miR528. Our findings support the notion that the regulation of SsCBP1 by miR528 is shared at least within graminaceous monocots, and this miRNA-based post-transcriptional regulation evolved exclusively within the monocots lineage after the divergence from eudicots. Conclusions Using publicly available nucleotide databases, 19 sugarcane miRNA precursors and one new sorghum miRNA precursor were identified and classified into 14 families. Comparative analyses between sugarcane and sorghum suggest that these two species retain homologous miRNAs and targets in their genomes. Such conservation may help to clarify specific aspects of miRNA regulation and evolution in the polyploid sugarcane. Finally, our dataset provides a framework for future studies on sugarcane RNAi-dependent regulatory mechanisms.
Resumo:
Background: The ZNF706 gene encodes a protein that belongs to the zinc finger family of proteins and was found to be highly expressed in laryngeal cancer, making the structure and function of ZNF706 worthy of investigation. In this study, we expressed and purified recombinant human ZNF706 that was suitable for structural analysis in Escherichia coli BL21(DH3). Findings: ZNF706 mRNA was extracted from a larynx tissue sample, and cDNA was ligated into a cloning vector using the TOPO method. ZNF706 protein was expressed according to the E. coli expression system procedures and was purified using a nickel-affinity column. The structural qualities of recombinant ZNF706 and quantification alpha, beta sheet, and other structures were obtained by spectroscopy of circular dichroism. ZNF706's structural modeling showed that it is composed of α-helices (28.3%), β-strands (19.4%), and turns (20.9%), in agreement with the spectral data from the dichroism analysis. Conclusions: We used circular dichroism and molecular modeling to examine the structure of ZNF706. The results suggest that human recombinant ZNF706 keeps its secondary structures and is appropriate for functional and structural studies. The method of expressing ZNF706 protein used in this study can be used to direct various functional and structural studies that will contribute to the understanding of its function as well as its relationship with other biological molecules and its putative role in carcinogenesis.
Resumo:
Chitosan/poly(vinyl sulfonic acid) (PVS) films have been prepared on Nafion® membranes by the layer-by-layer (LbL) method for use in direct methanol fuel cell (DMFC). Computational methods and Fourier transform infrared (FTIR) spectra suggest that an ionic pair is formed between the sulfonic group of PVS and the protonated amine group of chitosan, thereby promoting the growth of LbL films on the Nafion® membrane as well as partial blocking of methanol. Chronopotentiometry and potential linear scanning experiments have been carried out for investigation of methanol crossover through the Nafion® and chitosan/PVS/Nafion® membranes in a diaphragm diffusion cell. On the basis of electrical impedance measurements, the values of proton resistance of the Nafion® and chitosan/PVS/Nafion® membranes are close due to the small thickness of the LbL film. Thus, it is expected an improved DMFC performance once the additional resistance of the self-assembled film is negligible compared to the result associated with the decrease in the crossover effect.
Resumo:
The Laje de Santos Marine State Park (LSMSP), located in southeastern Brazil, is the only marine park in São Paulo State. This conservation unit has been established as a protected area of high biological diversity. Despite its importance for the conservation of the marine biota, little is known about the park's seaweed flora. The objectives of this study were as follows: to furnish increased knowledge of the composition of the macroalgae in the Park area; to relate the area's macroalgal composition to the presence of an important water mass in the region, the South Atlantic Central Water (SACW); and to investigate the possible influence of the Port of Santos on the composition of the macroalgae of the LSMSP. This study registered 31 new records for the LSMSP, 11 for São Paulo State, four for Brazil, one for the western Atlantic and one for the South Atlantic Ocean, in addition to the possible occurrence of one new species of Osmundea (Rhodomelaceae) and one new genus belonging to Ceramiaceae. The taxonomic composition of the macroalgae had a direct correlation with the arrival of the SACW in the summer-fall season. The SACW generated a strong thermocline and increased the supply of nutrients in the water column. Hydrodynamic and dispersion modeling analyses suggested that the Port of Santos influenced the composition of the LSMSP phycoflora.
Resumo:
Reinforced concrete beam elements are submitted to applicable loads along their life cycle that cause shear and torsion. These elements may be subject to only shear, pure torsion or both, torsion and shear combined. The Brazilian Standard Code ABNT NBR 6118:2007 [1] fixes conditions to calculate the transverse reinforcement area in beam reinforced concrete elements, using two design models, based on the strut and tie analogy model, first studied by Mörsch [2]. The strut angle θ (theta) can be considered constant and equal to 45º (Model I), or varying between 30º and 45º (Model II). In the case of transversal ties (stirrups), the variation of angle α (alpha) is between 45º and 90º. When the equilibrium torsion is required, a resistant model based on space truss with hollow section is considered. The space truss admits an inclination angle θ between 30º and 45º, in accordance with beam elements subjected to shear. This paper presents a theoretical study of models I and II for combined shear and torsion, in which ranges the geometry and intensity of action in reinforced concrete beams, aimed to verify the consumption of transverse reinforcement in accordance with the calculation model adopted As the strut angle on model II ranges from 30º to 45º, transverse reinforcement area (Asw) decreases, and total reinforcement area, which includes longitudinal torsion reinforcement (Asℓ), increases. It appears that, when considering model II with strut angle above 40º, under shear only, transverse reinforcement area increases 22% compared to values obtained using model I.
Resumo:
The boundary layer over concave surfaces can be unstable due to centrifugal forces, giving rise to Goertler vortices. These vortices create two regions in the spanwise direction—the upwash and downwash regions. The downwash region is responsible for compressing the boundary layer toward the wall, increasing the heat transfer rate. The upwash region does the opposite. In the nonlinear development of the Goertler vortices, it can be observed that the upwash region becomes narrow and the spanwise–average heat transfer rate is higher than that for a Blasius boundary layer. This paper analyzes the influence of the spanwise wavelength of the Goertler the heat transfer. The equation is written in vorticity-velocity formulation. The time integration is done via a classical fourth-order Runge-Kutta method. The spatial derivatives are calculated using high-order compact finite difference and spectral methods. Three different wavelengths are analyzed. The results show that steady Goertler flow can increase the heat transfer rates to values close to the values of turbulence, without the existence of a secondary instability. The geometry (and computation domain) are presented
Resumo:
The modern GPUs are well suited for intensive computational tasks and massive parallel computation. Sparse matrix multiplication and linear triangular solver are the most important and heavily used kernels in scientific computation, and several challenges in developing a high performance kernel with the two modules is investigated. The main interest it to solve linear systems derived from the elliptic equations with triangular elements. The resulting linear system has a symmetric positive definite matrix. The sparse matrix is stored in the compressed sparse row (CSR) format. It is proposed a CUDA algorithm to execute the matrix vector multiplication using directly the CSR format. A dependence tree algorithm is used to determine which variables the linear triangular solver can determine in parallel. To increase the number of the parallel threads, a coloring graph algorithm is implemented to reorder the mesh numbering in a pre-processing phase. The proposed method is compared with parallel and serial available libraries. The results show that the proposed method improves the computation cost of the matrix vector multiplication. The pre-processing associated with the triangular solver needs to be executed just once in the proposed method. The conjugate gradient method was implemented and showed similar convergence rate for all the compared methods. The proposed method showed significant smaller execution time.