17 resultados para Citric Acid


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objectives: Stimulation of salivary flow is considered a preventive strategy for dental erosion. Alternatively, products containing calcium phosphate, such as a complex of casein phosphopeptide–amorphous calcium phosphate (CPP–ACP), have also been tested against dental erosion. Therefore, this in situ study analyzed the effect of chewing gum containing CPP–ACP on the mineral precipitation of initial bovine enamel erosion lesions. Methods: Twelve healthy adult subjects wore palatal appliances with two eroded bovine enamel samples. The erosion lesions were produced by immersion in 0.1% citric acid (pH 2.5) for 7 min. During three experimental crossover in situ phases (1 day each), the subjects chewed a type of gum, 3 times for 30 min, in each phase: with CPP–ACP (trident total), without CPP–ACP (trident), and no chewing gum (control). The Knoop surface microhardness was measured at baseline, after erosion in vitro and the mineral precipitation in situ. The differences in the degree of mineral precipitation were analyzed using repeated measures (RM-) ANOVA and post hoc Tukey’s test ( p < 0.05). Results: Significant differences were found among the remineralizing treatments ( p < 0.0001). Chewing gum (19% of microhardness recovery) improved the mineral precipitation compared to control (10%) and the addition of CPP–ACP into the gum promoted the best mineral precipitation effect (30%). Conclusions: Under this protocol, CPP–ACP chewing gum improved the mineral precipitation of eroded enamel. Clinical significance: Since the prevalence of dental erosion is steadily increasing, CPP–ACP chewing gum might be an important strategy to reduce th eprogression of initial erosion lesions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of solutions of 0.2% chitosan, 15% EDTA and 10% citric acid on the microhardness of root dentin was evaluated comparatively in this study. Thirteen sound human maxillary central incisors were selected and decoronated at the cementoenamel junction. Ten roots were set into rapid polymerization acrylic resin and the root/resin block was fitted to the cutting machine to obtain slices from the cervical third. The first slice was discarded and the second slice was divided into four quadrants. Each quadrant was used to construct a sample, so that 4 specimens were obtained from each root slice, being one for each chelating solution to be tested: 15% EDTA, 10% citric acid, 0.2% chitosan and distilled water (control). The specimens were exposed to 50 μL of the solution for 5 min, and then washed in distilled water. A microhardness tester (Knoop hardness) with a 10 g load was used for 15 s. Data were analyzed statistically by one-way ANOVA and Tukey-Kramer test (α=0.05). The other 3 roots had the canals instrumented and irrigated at the end of the biomechanical preparation with the test solutions, and then examined by scanning electron microscopy (SEM) for qualitative analysis. All solutions reduced the microhardness of root dentin in a way that was statistically similar to each other (p>0.05) but significantly different from the control (p>0.05). The SEM micrographs showed that the three solutions removed smear layer from the middle third of the root canal. In conclusion, 0.2% chitosan, 15% EDTA and 10% citric acid showed similar effects in reducing dentin microhardness.