19 resultados para Chorionic Gonadotropin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Since noradrenergic innervation was described in the ovarian follicle, the actions of the intraovarian catecholaminergic system have been the focus of a variety of studies. We aimed to determine the gonadotropin-independent effects of the catecholamine norepinephrine (NE) in the steroid hormone profile of a serum-free granulosa cell (GC) culture system in the context of follicular development and dominance. Methods: Primary bovine GCs were cultivated in a serum-free, chemically defined culture system supplemented with 0.1% polyvinyl alcohol. The culture features were assessed by hormone measurements and ultrastructural characteristics of GCs. Results: GCs produced increasing amounts of estradiol and pregnenolone for 144h and maintained ultrastructural features of healthy steroidogenic cells. Progesterone production was also detected, although it significantly increased only after 96h of culture. There was a highly significant positive correlation between estradiol and pregnenolone production in high E2-producing cultures. The effects of NE were further evaluated in a dose response study. The highest tested concentration of NE (10 (-7) M) resulted in a significant increase in progesterone production, but not in estradiol or pregnenolone production. The specificity of NE effects on progesterone productio n was further investigated by incubating GCs with propranolol (10 (-8) M), a non-selective beta-adrenergic antagonist. Conclusions: The present culture system represents a robust model to study the impact of intrafollicular factors, such as catecholamines, in ovarian steroidogenesis and follicular development. The results of noradrenergic effects in the steroidogenesis of GC have implications on physiological follicular fate and on certain pathological ovarian conditions such as cyst formation and anovulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

According to the classification of placental types among animals, the transfer of iron through the placenta can occur via: absorption connected to transferin through the outer surface of the trophoblast in direct contact with circulating maternal blood; absorption of the erythrocytes by the chorionic epithelium in direct contact with accumulation of blood extravased from haemotophagous areas; absorption by the chorionic epithelium in direct contact with iron enriched secretions from the endometrial glands and absorption by extravasations of the blood in the maternal-fetal surface and the subsequent phagocytosis of the erythrocytes by trophoblast cells described in bovine, small ruminants, canine and feline. The function of erythrophagocytosis observed after the extravasation of blood in the maternal-fetal interface is undefined in several species. Possibly, the iron is transferred to the fetus through the trophoblastic erythrophagocytosis in the hemophogous area of the placenta and also in the endometrial glands. In this literature survey, new methods of studies regarding placental transfer involving iron and other nutrients necessary for survival and maintenance of embryonic fetus to birth are proposed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract Background Neonatal STZ treatment induces a state of mild hyperglycemia in adult rats that disrupts metabolism and maternal/fetal interactions. The aim of this study was investigate the effect of neonatal STZ treatment on the physical development, behavior, and reproductive function of female Wistar rats from infancy to adulthood. Methods At birth, litters were assigned either to a Control (subcutaneous (s.c.) citrate buffer, n = 10) or STZ group, (streptozotocin (STZ) - 100 mg/kg-sc, n = 6). Blood glucose levels were measured on postnatal days (PND) 35, 84 and 120. In Experiment 1 body weight, length and the appearance of developmental milestones such as eye and vaginal opening were monitored. To assess the relative contribution of the initial and long term effects of STZ treatment this group was subdivided based on blood glucose levels recorded on PND 120: STZ hyperglycemic (between 120 and 300 mg/dl) and STZ normoglycemic (under 120 mg/dl). Behavioral activity was assessed in an open field on PND 21 and 75. In Experiment 2 estrous cyclicity, sexual behavior and circulating gonadotropin, ovarian steroid, and insulin levels were compared between control and STZ-hyperglycemic rats. In all measures the litter was the experimental unit. Parametric data were analyzed using one-way or, where appropriate, two-way ANOVA and significant effects were investigated using Tukey’s post hoc test. Fisher’s exact test was employed when data did not satisfy the assumption of normality e.g. presence of urine and fecal boli on the open field between groups. Statistical significance was set at p < 0.05 for all data. Results As expected neonatal STZ treatment caused hyperglycemia and hypoinsulinemia in adulthood. STZ-treated pups also showed a temporary reduction in growth rate that probably reflected the early loss of circulating insulin. Hyperglycemic rats also exhibited a reduction in locomotor and exploratory behavior in the open field. Mild hyperglycemia did not impair gonadotropin levels or estrous cylicity but ovarian steroid concentrations were altered. Conclusions In female Wistar rats, neonatal STZ treatment impairs growth in infancy and results in mild hyperglycemia/hypoinsulinemia in adulthood that is associated with changes in the response to a novel environment and altered ovarian steroid hormone levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Studies in men are not consistent regarding the effects of thyroid hormone on the production of gonadotropins. In hypothyroidism consequent to diverse causes, an increase or no change in serum luteinizing hormone (LH) have been reported. The attempt to explain the mechanisms involved in this pathology using rats as an experimental model also seems to repeat this divergence, since hypothyroidism has been shown to induce hypogonadotropic hypogonadism, a hypergonadotropic state, or not to affect the basal levels of LH. Notably, the promoter region of the gene encoding the Lh beta subunit and GnRH (gonadotropin-releasing factor) does not contain a thyroid responsive element. Therefore, we investigated the hypothesis that, in male rats, posttranscriptional mechanisms of LH synthesis are altered in hypothyroidism. We also attempted to determine if hypothyroidism directly affects testicular function in male rats. METHODS: Male Wistar rats, 60 days old, were thyroidectomized or sham-operated. After 20 days, they were decapitated, and the pituitaries were collected and analyzed for Lh mRNA, LH content, poly(A) tail length, and polysome profile. The testes were collected and analyzed for Lh receptor mRNA, LH receptor content, and histology using morphometric analyses. The testis, epididymis, seminal vesicle, and ventral prostate were weighed, and serum concentrations of LH, testosterone, thyrotropin (TSH), and triiodothyronine (T3) were measured. RESULTS: Hypothyroidism was associated, in the pituitary, with an increase in Lh mRNA expression, a reduction in Lh mRNA poly(A) tail length, a reduction in the number of LH transcripts associated with polysomes. Pituitary LH was decreased but serum LH was increased from 102 to 543 pg/mL. Despite this, serum testosterone concentrations were decreased from 1.8 to 0.25 ng/mL. A decreased germinative epithelium height of the testes and a reduced weight of androgen-responsive tissues were observed (ventral prostrate: 74 vs. 23 mg/100 g body weight [BW]; seminal vesicle undrained: 280 vs. 70 mg/100 g BW; and seminal vesicle drained: 190 vs. 60 mg/100 g BW). CONCLUSIONS: Hypothyroidism in adult male rats has dual effects on the pituitary testicular axis. It alters posttranscriptional mechanisms of LH synthesis and probably has a direct effect on testicular function. However, these data suggest the possibility that reduced LH bioactivity may account in part for impaired testicular function.