24 resultados para Characterization methods


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Peroxiredoxins have diverse functions in cellular defense-signaling pathways. 2-Cys-peroxiredoxins (2-Cys-Prx) reduce H2O2 and alkyl-hydroperoxide. This study describes the purification and characterization of a genuine 2-Cys-Prx from Vigna unguiculata (Vu-2-Cys-Prx). Methods: Vu-2-Cys-Prx was purified from leaves by ammonium sulfate fractionation, chitin affinity and ion exchange chromatography. Results: Vu-2-Cys-Prx reduces H2O2 using NADPH and DTT. Vu-2-Cys-Prx is a 44 kDa (SDS-PAGE)/46 kDa (exclusion chromatography) protein that appears as a 22 kDa molecule under reducing conditions, indicating that it is a homodimer linked intermolecularly by disulfide bonds and has a pI range of 4.56-4.72; its NH2-terminal sequence was similar to 2-Cys-Prx from Phaseolus vulgaris (96%) and Populus tricocarpa (96%). Analysis by ESI-Q-TOF MS/MS showed a molecular mass/pI of 28.622 kDa/5.18. Vu-2-Cys-Prx has 8% alpha-helix, 39% beta-sheet, 22% of turns and 31% of unordered forms. Vu-2-Cys-Prx was heat stable, has optimal activity at pH 7.0, and prevented plasmid DNA degradation. Atomic force microscopy shows that Vu-2-Cys-Prx oligomerized in decamers which might be associated with its molecular chaperone activity that prevented denaturation of insulin and citrate synthase. Its cDNA analysis showed that the redox-active Cys(52) residue and the amino acids Pro(45), Thr(49) and Arg(128) are conserved as in other 2-Cys-Prx. General significance: The biochemical and molecular features of Vu-2-Cys-Prx are similar to other members of 2-Cys-Prx family. To date, only one publication reported on the purification of native 2-Cys-Prx from leaves and the subsequent analysis by N-terminal Edman sequencing, which is crucial for construction of stromal recombinant 2-Cys-Prx proteins. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Travelling wave ion mobility mass spectrometry (TWIM-MS) with post-TWIM and pre-TWIM collision-induced dissociation (CID) experiments were used to form, separate and characterize protomers sampled directly from solutions or generated in the gas phase via CID. When in solution equilibria, these species were transferred to the gas phase via electrospray ionization, and then separated by TWIM-MS. CID performed after TWIM separation (post-TWIM) allowed the characterization of both protomers via structurally diagnostic fragments. Protonated aniline (1) sampled from solution was found to be constituted of a ca. 5:1 mixture of two gaseous protomers, that is, the N-protonated (1a) and ring protonated (1b) molecules, respectively. When dissociated, 1a nearly exclusively loses NH3, whereas 1b displays a much diverse set of fragments. When formed via CID, varying populations of 1a and 1b were detected. Two co-existing protomers of two isomeric porphyrins were also separated and characterized via post-TWIM CID. A deprotonated porphyrin sampled from a basic methanolic solution was found to be constituted predominantly of the protomer arising from deprotonation at the carboxyl group, which dissociates promptly by CO2 loss, but a CID-resistant protomer arising from deprotonation at a porphyrinic ring NH was also detected and characterized. The doubly deprotonated porphyrin was found to be constituted predominantly of a single protomer arising from deprotonation of two carboxyl groups. Copyright (C) 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The nasopalatine region is composed of structures such as the vomeronasal organ and nasopalatine duct. The nasopalatine duct may provide the communication of the mouth to the nasal cavity in human fetuses and can be obliterated in an adult human. Knowledge on the development of the nasopalatine region and nasopalatine duct in humans is necessary for understanding the morphology and etiopathogenesis of lesions that occur in this region. Objective: The aim of the present study was to describe the morphological aspects of the nasopalatine region in human fetuses and correlate these aspects with the development of pathologies in this region. Material and Methods: Five human fetuses with no facial or palatine abnormalities were used for the acquisition of specimens from the nasopalatine region. After demineralization, the specimens were histologically processed. Histological cuts were stained with methylene blue to orient the cutting plane and hematoxylin-eosin for the descriptive histological analysis. Results: The age of the fetuses was 8.00, 8.25, 9.00 and 9.25 weeks, and it was not possible to determine the age in the last one. The incisive canal was observed in all specimens as an opening delimited laterally by the periosteum and connecting oral and nasal cavity. The nasopalatine duct is an epithelial structure with the greatest morphological variation, with either unilateral or bilateral occurrence and total patent, partial patent and islet forms. The vomeronasal organ is a bilateral epithelized structure located alongside the nasal septum above the incisive canal in all the fetuses. Conclusions: The incisive canal, nasopalatine duct and vomeronasal organ are distinct anatomic structures. The development of nasopalatine duct cysts may occur in all forms of the nasopalatine duct.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Isoprenoids are the most diverse and abundant group of natural products. In Plasmodium falciparum, isoprenoid synthesis proceeds through the methyl erythritol diphosphate pathway and the products are further metabolized by farnesyl diphosphate synthase (FPPS), turning this enzyme into a key branch point of the isoprenoid synthesis. Changes in FPPS activity could alter the flux of isoprenoid compounds downstream of FPPS and, hence, play a central role in the regulation of a number of essential functions in Plasmodium parasites. Methods The isolation and cloning of gene PF3D7_18400 was done by amplification from cDNA from mixed stage parasites of P. falciparum. After sequencing, the fragment was subcloned in pGEX2T for recombinant protein expression. To verify if the PF3D7_1128400 gene encodes a functional rPfFPPS protein, its catalytic activity was assessed using the substrate [4-14C] isopentenyl diphosphate and three different allylic substrates: dimethylallyl diphosphate, geranyl diphosphate or farnesyl diphosphate. The reaction products were identified by thin layer chromatography and reverse phase high-performance liquid chromatography. To confirm the product spectrum formed of rPfFPPS, isoprenic compounds were also identified by mass spectrometry. Apparent kinetic constants KM and Vmax for each substrate were determined by Michaelis–Menten; also, inhibition assays were performed using risedronate. Results The expressed protein of P. falciparum FPPS (rPfFPPS) catalyzes the synthesis of farnesyl diphosphate, as well as geranylgeranyl diphosphate, being therefore a bifunctional FPPS/geranylgeranyl diphosphate synthase (GGPPS) enzyme. The apparent KM values for the substrates dimethylallyl diphosphate, geranyl diphosphate and farnesyl diphosphate were, respectively, 68 ± 5 μM, 7.8 ± 1.3 μM and 2.06 ± 0.4 μM. The protein is expressed constitutively in all intra-erythrocytic stages of P. falciparum, demonstrated by using transgenic parasites with a haemagglutinin-tagged version of FPPS. Also, the present data demonstrate that the recombinant protein is inhibited by risedronate. Conclusions The rPfFPPS is a bifunctional FPPS/GGPPS enzyme and the structure of products FOH and GGOH were confirmed mass spectrometry. Plasmodial FPPS represents a potential target for the rational design of chemotherapeutic agents to treat malaria.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Floating-Harbor syndrome (FHS) is a rare condition characterized by short stature, delays in expressive language, and a distinctive facial appearance. Recently, heterozygous truncating mutations in SRCAP were determined to be disease-causing. With the availability of a DNA based confirmatory test, we set forth to define the clinical features of this syndrome. Methods and results Clinical information on fifty-two individuals with SRCAP mutations was collected using standardized questionnaires. Twenty-four males and twenty-eight females were studied with ages ranging from 2 to 52 years. The facial phenotype and expressive language impairments were defining features within the group. Height measurements were typically between minus two and minus four standard deviations, with occipitofrontal circumferences usually within the average range. Thirty-three of the subjects (63%) had at least one major anomaly requiring medical intervention. We did not observe any specific phenotype-genotype correlations. Conclusions This large cohort of individuals with molecularly confirmed FHS has allowed us to better delineate the clinical features of this rare but classic genetic syndrome, thereby facilitating the development of management protocols.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gastric cancer is the fourth most common cancer and the second leading cause of cancer-related deaths worldwide. Galectins form a family of β-galactosides binding proteins that recognize a variety of glycan-containing proteins at the cell surface and are overexpressed in various tumors, including gastric cancer. Galectins overexpression as well as changes in their subcellular distribution has been associated with gastric cancer progression and poor prognosis. It is not well understood, however, how the interaction between galectins and glycosylated receptors modulates tumor development and growth. Since Notch receptors and ligands contain glycan structures known to bind galectins, we aim to demonstrate that galectins expression in the tumor microenvironment may interfere with Notch signaling activation during tumor development and progression. Materials and methods Immunoprecipitation procedures with gastric cancer cell line AGS (ATCC CRL-1739) and MKN45 (ACC 409) were used to test for association between galectin-1/-3 and Notch-1 receptor. Furthermore, we transfected AGS cell line with siRNA against galectin-1/-3 or scramble using standard protocols (IDT DNA technologies), stimulate them with immobilized human recombinant delta-4 or Jagged-1 and assessed Notch-1 receptor activation. Results Galectin-1 and -3 interact with Notch-1 receptor and differentially modulate Notch signaling pathway upon activation by Delta/Jagged ligands. Galectin-1 knockdown alters Notch-1 activation induced by Delta-4 whereas galectin-3 knockdown alters jagged-1-mediated Notch-1 activation. Furthermore, we found that exogenously added galectin-3 can enhance Notch-1 activation by Jagged-1. Conclusion Our results suggest that galectin-1 and -3 interact with Notch-1 receptor and differentially modulate Notch signaling activation induced by Jagged-1 and Delta-4.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Sepsis is a common condition encountered in hospital environments. There is no effective treatment for sepsis, and it remains an important cause of death at intensive care units. This study aimed to discuss some methods that are available in clinics, and tests that have been recently developed for the diagnosis of sepsis. METHODS: A systematic review was performed through the analysis of the following descriptors: sepsis, diagnostic methods, biological markers, and cytokines. RESULTS: The deleterious effects of sepsis are caused by an imbalance between the invasiveness of the pathogen and the ability of the host to mount an effective immune response. Consequently, the host's immune surveillance fails to eliminate the pathogen, allowing it to spread. Moreover, there is a pro-inflammatory mediator release, inappropriate activation of the coagulation and complement cascades, leading to dysfunction of multiple organs and systems. The difficulty achieve total recovery of the patient is explainable. There is an increased incidence of sepsis worldwide due to factors such as aging population, larger number of surgeries, and number of microorganisms resistant to existing antibiotics. CONCLUSION: The search for new diagnostic markers associated with increased risk of sepsis development and molecules that can be correlated to certain steps of sepsis is becoming necessary. This would allow for earlier diagnosis, facilitate patient prognosis characterization, and prediction of possible evolution of each case. All other markers are regrettably constrained to research units.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Intronic and intergenic long noncoding RNAs (lncRNAs) are emerging gene expression regulators. The molecular pathogenesis of renal cell carcinoma (RCC) is still poorly understood, and in particular, limited studies are available for intronic lncRNAs expressed in RCC Methods Microarray experiments were performed with custom-designed arrays enriched with probes for lncRNAs mapping to intronic genomic regions. Samples from 18 primary RCC tumors and 11 nontumor adjacent matched tissues were analyzed. Meta-analyses were performed with microarray expression data from three additional human tissues (normal liver, prostate tumor and kidney nontumor samples), and with large-scale public data for epigenetic regulatory marks and for evolutionarily conserved sequences. Results A signature of 29 intronic lncRNAs differentially expressed between RCC and nontumor samples was obtained (false discovery rate (FDR) <5%). A signature of 26 intronic lncRNAs significantly correlated with the RCC five-year patient survival outcome was identified (FDR <5%, p-value ≤0.01). We identified 4303 intronic antisense lncRNAs expressed in RCC, of which 22% were significantly (p <0.05) cis correlated with the expression of the mRNA in the same locus across RCC and three other human tissues. Gene Ontology (GO) analysis of those loci pointed to 'regulation of biological processes’ as the main enriched category. A module map analysis of the protein-coding genes significantly (p <0.05) trans correlated with the 20% most abundant lncRNAs, identified 51 enriched GO terms (p <0.05). We determined that 60% of the expressed lncRNAs are evolutionarily conserved. At the genomic loci containing the intronic RCC-expressed lncRNAs, a strong association (p <0.001) was found between their transcription start sites and genomic marks such as CpG islands, RNA Pol II binding and histones methylation and acetylation. Conclusion Intronic antisense lncRNAs are widely expressed in RCC tumors. Some of them are significantly altered in RCC in comparison with nontumor samples. The majority of these lncRNAs is evolutionarily conserved and possibly modulated by epigenetic modifications. Our data suggest that these RCC lncRNAs may contribute to the complex network of regulatory RNAs playing a role in renal cell malignant transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Haemophilus parasuis infection, known as Glässer’s disease, is characterized by fibrinous polyserositis, arthritis and meningitis in piglets. Although traditional diagnosis is based on herd history, clinical signs, bacterial isolation and serotyping, the molecular-based methods are alternatives for species-specific tests and epidemiologic study. The aim of this study was to characterize H. parasuis strains isolated from different states of Brazil by serotyping, PCR and ERIC-PCR. Serotyping revealed serovar 4 as the most prevalent (24 %), followed by serovars 14 (14 %), 5 (12 %), 13 (8 %) and 2 (2 %), whereas 40 % of the strains were considered as non-typeable. From 50 strains tested 43 (86%) were positive to Group 1 vtaA gene that have been related to virulent strains of H.parasuis. ERIC-PCR was able to type isolates tested among 23 different patterns, including non-typeable strains. ERIC-PCR patterns were very heterogeneous and presented high similarity between strains of the same animal or farm origin. The results indicated ERIC-PCR as a valuable tool for typing H. parasuis isolates collected in Brazil.