21 resultados para Central and peripheral chemoreflex
Resumo:
Several studies from our group have indicated that the BNST play an important role in baroreflex modulation. However, the involvement of the BNST in the chemoreflex activity is unknown. Thus, in the present study, we investigated the effect of the local bed nucleus of stria terminalis (BNST) neurotransmission inhibition by bilateral microinjections of the non-selective synaptic blocker cobalt chloride (CoCl2) on the cardiovascular responses to chemoreflex activation in rats. For this purpose, chemoreflex was activated with KCN (i.v.) before and after microinjections of CoCl2 into the BNST. Reversible BNST inactivation produced no significant changes in the magnitude and durations of both pressor and bradycardic responses to intravenous KCN infusion. These findings suggesting that BNST neurotransmission have not influence on both sympathoexcitatory and parasympathoexcitatory components of the peripheral chemoreflex activation. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Moraes DJ, Zoccal DB, Machado BH. Sympathoexcitation during chemoreflex active expiration is mediated by L-glutamate in the RVLM/Botzinger complex of rats. J Neurophysiol 108: 610-623, 2012. First published April 25, 2012; doi:10.1152/jn.00057.2012.-The involvement of glutamatergic neurotransmission in the rostral ventrolateral medulla/Botzinger/pre-Botzinger complexes (RVLM/BotC/pre-BotC) on the respiratory modulation of sympathoexcitatory response to peripheral chemoreflex activation (chemoreflex) was evaluated in the working heart-brain stem preparation of juvenile rats. We identified different types of baro- and chemosensitive presympathetic and respiratory neurons intermingled within the RVLM/BotC/pre-BotC. Bilateral microinjections of kynurenic acid (KYN) into the rostral aspect of RVLM (RVLM/BotC) produced an additional increase in frequency of the phrenic nerve (PN: 0.38 +/- 0.02 vs. 1 +/- 0.08 Hz; P < 0.05; n = 18) and hypoglossal (HN) inspiratory response (41 +/- 2 vs. 82 +/- 2%; P < 0.05; n = 8), but decreased postinspiratory (35 +/- 3 vs. 12 +/- 2%; P < 0.05) and late-expiratory (24 +/- 4 vs. 2 +/- 1%; P < 0.05; n = 5) abdominal (AbN) responses to chemoreflex. Likewise, expiratory vagal (cVN; 67 +/- 6 vs. 40 +/- 2%; P < 0.05; n = 5) and expiratory component of sympathoexcitatory (77 +/- 8 vs. 26 +/- 5%; P < 0.05; n = 18) responses to chemoreflex were reduced after KYN microinjections into RVLM/BotC. KYN microinjected into the caudal aspect of the RVLM (RVLM/pre-BotC; n = 16) abolished inspiratory responses [PN (n = 16) and HN (n = 6)], and no changes in magnitude of sympathoexcitatory (n = 16) and expiratory (AbN and cVN; n = 10) responses to chemoreflex, producing similar and phase-locked vagal, abdominal, and sympathetic responses. We conclude that in relation to chemoreflex activation 1) ionotropic glutamate receptors in RVLM/BotC and RVLM/pre-BtC are pivotal to expiratory and inspiratory responses, respectively; and 2) activation of ionotropic glutamate receptors in RVLM/BotC is essential to the coupling of active expiration and sympathoexcitatory response.
Resumo:
Background: Essential Thrombocythemia (ET) and Primary Myelofibrosis (PMF) are Chronic Myeloproliferative Neoplasms (MPN) characterized by clonal myeloproliferation/myeloaccumulation without cell maturation impairment. The JAK2 V617F mutation and PRV1 gene overexpression may contribute to MPN physiopathology. We hypothesized that deregulation of the apoptotic machinery may also play a role in the pathogenesis of ET and PMF. In this study we evaluated the apoptosis-related gene and protein expression of BCL2 family members in bone marrow CD34(+) hematopoietic stem cells (HSC) and peripheral blood leukocytes from ET and PMF patients. We also tested whether the gene expression results were correlated with JAK2 V617F allele burden percentage, PRV1 overexpression, and clinical and laboratory parameters. Results: By real time PCR assay, we observed that A1, MCL1, BIK and BID, as well as A1, BCLW and BAK gene expression were increased in ET and PMF CD34(+) cells respectively, while pro-apoptotic BAX and anti-apoptotic BCL2 mRNA levels were found to be lower in ET and PMF CD34(+) cells respectively, in relation to controls. In patients' leukocytes, we detected an upregulation of anti-apoptotic genes A1, BCL2, BCL-XL and BCLW. In contrast, pro-apoptotic BID and BIMEL expression were downregulated in ET leukocytes. Increased BCL-XL protein expression in PMF leukocytes and decreased BID protein expression in ET leukocytes were observed by Western Blot. In ET leukocytes, we found a correlation between JAK2 V617F allele burden and BAX, BIK and BAD gene expression and between A1, BAX and BIK and PRV1 gene expression. A negative correlation between PRV1 gene expression and platelet count was observed, as well as a positive correlation between PRV1 gene expression and splenomegaly. Conclusions: Our results suggest the participation of intrinsic apoptosis pathway in the MPN physiopathology. In addition, PRV1 and JAK2 V617F allele burden were linked to deregulation of the apoptotic machinery.
Resumo:
We described recently that systemic hypoxia provokes vasoconstriction in heart failure (HF) patients. We hypothesized that either the exaggerated muscle sympathetic nerve activity and/or endothelial dysfunction mediate the blunted vasodilatation during hypoxia in HF patients. Twenty-seven HF patients and 23 age-matched controls were studied. Muscle sympathetic nerve activity was assessed by microneurography and forearm blood flow (FBF) by venous occlusion plethysmography. Peripheral chemoreflex control was evaluated through the inhaling of a hypoxic gas mixture (10% O-2 and 90% N-2). Basal muscle sympathetic nerve activity was greater and basal FBF was lower in HF patients versus controls. During hypoxia, muscle sympathetic nerve activity responses were greater in HF patients, and forearm vasodilatation in HF was blunted versus controls. Phentolamine increased FBF responses in both groups, but the increase was lower in HF patients. Phentolamine and N-G-monomethyl-L-arginine infusion did not change FBF responses in HF but markedly blunted the vasodilatation in controls. FBF responses to hypoxia in the presence of vitamin C were unchanged and remained lower in HF patients versus controls. In conclusion, muscle vasoconstriction in response to hypoxia in HF patients is attributed to exaggerated reflex sympathetic nerve activation and blunted endothelial function (NO activity). We were unable to identify a role for oxidative stress in these studies. (Hypertension. 2012; 60: 669-676.) . Online Data Supplement
Resumo:
Abstract Background The etiology of Bell's palsy can vary but anterograde axonal degeneration may delay spontaneous functional recovery leading the necessity of therapeutic interventions. Corticotherapy and/or complementary rehabilitation interventions have been employed. Thus the natural history of the disease reports to a neurotrophic resistance of adult facial motoneurons leading a favorable evolution however the related molecular mechanisms that might be therapeutically addressed in the resistant cases are not known. Fibroblast growth factor-2 (FGF-2) pathway signaling is a potential candidate for therapeutic development because its role on wound repair and autocrine/paracrine trophic mechanisms in the lesioned nervous system. Methods Adult rats received unilateral facial nerve crush, transection with amputation of nerve branches, or sham operation. Other group of unlesioned rats received a daily functional electrical stimulation in the levator labii superioris muscle (1 mA, 30 Hz, square wave) or systemic corticosterone (10 mgkg-1). Animals were sacrificed seven days later. Results Crush and transection lesions promoted no changes in the number of neurons but increased the neurofilament in the neuronal neuropil of axotomized facial nuclei. Axotomy also elevated the number of GFAP astrocytes (143% after crush; 277% after transection) and nuclear FGF-2 (57% after transection) in astrocytes (confirmed by two-color immunoperoxidase) in the ipsilateral facial nucleus. Image analysis reveled that a seven days functional electrical stimulation or corticosterone led to elevations of FGF-2 in the cytoplasm of neurons and in the nucleus of reactive astrocytes, respectively, without astrocytic reaction. Conclusion FGF-2 may exert paracrine/autocrine trophic actions in the facial nucleus and may be relevant as a therapeutic target to Bell's palsy.
Resumo:
Biological rhythms are present in the lives of almost all organisms ranging from plants to more evolved creatures. These oscillations allow the anticipation of many physiological and behavioral mechanisms thus enabling coordination of rhythms in a timely manner, adaption to environmental changes and more efficient organization of the cellular processes responsible for survival of both the individual and the species. Many components of energy homeostasis exhibit circadian rhythms, which are regulated by central (suprachiasmatic nucleus) and peripheral (located in other tissues) circadian clocks. Adipocyte plays an important role in the regulation of energy homeostasis, the signaling of satiety and cellular differentiation and proliferation. Also, the adipocyte circadian clock is probably involved in the control of many of these functions. Thus, circadian clocks are implicated in the control of energy balance, feeding behavior and consequently in the regulation of body weight. In this regard, alterations in clock genes and rhythms can interfere with the complex mechanism of metabolic and hormonal anticipation, contributing to multifactorial diseases such as obesity and diabetes. The aim of this review was to define circadian clocks by describing their functioning and role in the whole body and in adipocyte metabolism, as well as their influence on body weight control and the development of obesity.