19 resultados para Cardiovascular failure
Resumo:
Abstract Background In Brazil, heart failure leads to approximately 25,000 deaths per year. Abnormal calcium handling is a hallmark of heart failure and changes in genes encoding for proteins involved in the re-uptake of calcium might harbor mutations leading to inherited cardiomyopathies. Phospholamban (PLN) plays a prime role in cardiac contractility and relaxation and mutations in the gene encoding PLN have been associated with dilated cardiomyopathy. In this study, our objective was to determine the presence of the -36A>C alteration in PLN gene in a Brazilian population of individuals with HF and to test whether this alteration is associated with heart failure or with a worse prognosis of patients with HF. Methods We genotyped a cohort of 881 patients with HF and 1259 individuals from a cohort of individuals from the general population for the alteration -36A>C in the PLN gene. Allele and genotype frequencies were compared between groups (patients and control). In addition, frequencies or mean values of different phenotypes associated with cardiovascular disease were compared between genotypic groups. Finally, patients were prospectively followed-up for death incidence and genotypes for the -36A>C were compared regarding mortality incidence in HF patients. Results No significant association was found between the study polymorphism and HF in our population. In addition, no association between PLN -36A>C polymorphism and demographic, clinical and functional characteristics and mortality incidence in this sample of HF patients was observed. Conclusion Our data do not support a role for the PLN -36A>C alteration in modulating the heart failure phenotype, including its clinical course, in humans.
Nuclear Factor (NF) κB polymorphism is associated with heart function in patients with heart failure
Resumo:
Abstract Background Cardiac remodeling is generally an adverse sign and is associated with heart failure (HF) progression. NFkB, an important transcription factor involved in many cell survival pathways, has been implicated in the remodeling process, but its role in the heart is still controversial. Recently, a promoter polymorphism associated with a lesser activation of the NFKB1 gene was also associated with Dilated Cardiomyopathy. The purpose of this study was to evaluate the association of this polymorphism with clinical and functional characteristics of heart failure patients of different etiologies. Methods A total of 493 patients with HF and 916 individuals from a cohort of individuals from the general population were investigated. The NFKB1 -94 insertion/deletion ATTG polymorphism was genotyped by High Resolution Melt discrimination. Allele and genotype frequencies were compared between groups. In addition, frequencies or mean values of different phenotypes associated with cardiovascular disease were compared between genotype groups. Finally, patients were prospectively followed-up for death incidence and genotypes for the polymorphism were compared regarding disease onset and mortality incidence in HF patients. Results We did not find differences in genotype and allelic frequencies between cases and controls. Interestingly, we found an association between the ATTG1/ATTG1 genotype with right ventricle diameter (P = 0.001), left ventricle diastolic diameter (P = 0.04), and ejection fraction (EF) (P = 0.016), being the genotype ATTG1/ATTG1 more frequent in patients with EF lower than 50% (P = 0.01). Finally, we observed a significantly earlier disease onset in ATTG1/ATTG1 carriers. Conclusion There is no genotype or allelic association between the studied polymorphism and the occurrence of HF in the tested population. However, our data suggest that a diminished activation of NFKB1, previously associated with the ATTG1/ATTG1 genotype, may act modulating on the onset of disease and, once the individual has HF, the genotype may modulate disease severity by increasing cardiac remodeling and function deterioration.
Resumo:
In this minireview we describe the involvement of the atrial natriuretic peptide (ANP) in cardiovascular pathophysiology and exercise. The ANP has a broad homeostatic role and exerts complex effects on the cardio-circulatory hemodynamics, it is produced by the left atrium and has a key role in regulating sodium and water balance in mammals and humans. The dominant stimulus for its release is atrial wall tension, commonly caused by exercise. The ANP is involved in the process of lipolysis through a cGMP signaling pathway and, as a consequence, reducing blood pressure by decreasing the sensitivity of vascular smooth muscle to the action of vasoconstrictors and regulate fluid balance. The increase of this hormone is associated with better survival in patients with chronic heart failure (CHF). This minireview provides new evidence based on recent studies related to the beneficial effects of exercise in patients with cardiovascular disease, focusing on the ANP.
Resumo:
Reactive oxygen and nitrogen species regulate a wide array of signaling pathways that governs cardiovascular physiology. However, oxidant stress resulting from disrupted redox signaling has an adverse impact on the pathogenesis and progression of cardiovascular diseases. In this review, we address how redox signaling and oxidant stress affect the pathophysiology of cardiovascular diseases such as ischemia-reperfusion injury, hypertension and heart failure. We also summarize the benefits of exercise training in tackling the hyperactivation of cellular oxidases and mitochondrial dysfunction seen in cardiovascular diseases