25 resultados para Capes - Program of academic cooperation
Resumo:
Layered double hydroxide (LDH) nanocontainers, suitable as carriers for anionic drugs, were intercalated with Pravastatin drug using magnesium-aluminum and zinc-aluminum in a M-II/Al molar ratio equal 2 and different Al3+/Pravastatin molar ratios. Postsynthesis treatments were used in order to increase the materials crystallinity. Hybrid materials were characterized by a set of physical chemical techniques: chemical elemental analysis, X-ray diffraction (XRD), mass coupled thermal analyses, vibrational infrared and Raman spectroscopies, and solid-state C-13 nuclear magnetic resonance (NMR). Results were interpreted in light of computational density functional theory (DFT) calculations performed for Sodium Pravastatin in order to assign the data obtained for the LDH intercalated materials. XRD peaks of LDH-Pravastatin material and the one-dimensional (1D) electron density map pointed out to a bilayer arrangement of Pravastatin in the interlayer region, where its associated carboxylate and vicinal hydroxyl groups are close to the positive LDH. The structural organization observed for the stacked assembly containing the unsymmetrical and bulky monoanion Pravastatin and LDH seems to be promoted by a self-assembling process, in which local interactions are maximized and chloride ion cointercalation is required. It is observed a high similarity among vibrational and C-13 NMR spectra of Na-Pravastatin and LDH-Pravastatin materials. Those features indicate that the intercalation preserves the drug structural integrity. Spectroscopic techniques corroborate the nature of the guest species and their arrangement between the inorganic layers. Changes related to carboxylate, alcohol, and olefinic moieties are observed in both vibrational Raman and C-13 NMR spectra after the drug intercalation. Thus, Pravastatin ions are forced to be arranged as head to tail through intermolecular hydrogen bonding between adjacent organic species. The thermal decomposition profile of the hybrid samples is distinct of that one observed for Na-Pravastatin salt, however, with no visible increase in the thermal behavior when the organic anion is sequestrated within LDH gap.
Resumo:
We examined the effects of soil mesofauna and the litter decomposition environment (above and belowground) on leaf decomposition rates in three forest types in southeastern Brazil. To estimate decomposition experimentally, we used litterbags with a standard substrate in a full-factorial experimental design. We used model selection to compare three decomposition models and also to infer the importance of forest type, decomposition environment, mesofauna, and their interactions on the decomposition process. Rather than the frequently used simple and double-exponential models, the best model to describe our dataset was the exponential deceleration model, which assumed a single organic compartment with an exponential decrease of the decomposition rate. Decomposition was higher in the wet than in the seasonal forest, and the differences between forest types were stronger aboveground. Regarding litter decomposition environment, decomposition was predominantly higher below than aboveground, but the magnitude of this effect was higher in the seasonal than in wet forests. Mesofauna exclusion treatments had slower decomposition, except aboveground into the Semi-deciduous Forest, where the mesofauna presence did not affect decomposition. Furthermore, the effect of mesofauna was stronger in the wet forests and belowground. Overall, our results suggest that, in a regional scale, both decomposers activity and the positive effect of soil mesofauna in decomposition are constrained by abiotic factors, such as moisture conditions.
Resumo:
The fractioning of lemon essential oil can be performed by liquid-liquid extraction using hydrous ethanol as a solvent. A quaternary mixture composed of limonene, gamma-terpinene, beta-pinene, and citral was used to simulate lemon essential oil. In this paper, we present (liquid + liquid) equilibrium data that were experimentally determined for systems containing essential oil compounds, ethanol, and water at T = 298.2 K. The experimental data were correlated using the NRTL and UNIQUAC models, and the mean deviations between calculated and experimental data were less than 0.0053 in all systems, indicating the accuracy of these molecular models in describing our systems. The results show that as the water content in the solvent phase increased, the values of the distribution coefficients decreased, regardless of the type of compound studied. However, the oxygenated compound always showed the highest distribution coefficient among the components of the essential oil, thus making deterpenation of the lemon essential oil a feasible process. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Documenting the Neotropical amphibian diversity has become a major challenge facing the threat of global climate change and the pace of environmental alteration. Recent molecular phylogenetic studies have revealed that the actual number of species in South American tropical forests is largely underestimated, but also that many lineages are millions of years old. The genera Phyzelaphryne (1 sp.) and Adelophryne (6 spp.), which compose the subfamily Phyzelaphryninae, include poorly documented, secretive, and minute frogs with an unusual distribution pattern that encompasses the biotic disjunction between Amazonia and the Atlantic forest. We generated >5.8 kb sequence data from six markers for all seven nominal species of the subfamily as well as for newly discovered populations in order to (1) test the monophyly of Phyzelaphryninae, Adelophryne and Phyzelaphryne, (2) estimate species diversity within the subfamily, and (3) investigate their historical biogeography and diversification. Phylogenetic reconstruction confirmed the monophyly of each group and revealed deep subdivisions within Adelophryne and Phyzelaphryne, with three major clades in Adelophryne located in northern Amazonia, northern Atlantic forest and southern Atlantic forest. Our results suggest that the actual number of species in Phyzelaphryninae is, at least, twice the currently recognized species diversity, with almost every geographically isolated population representing an anciently divergent candidate species. Such results highlight the challenges for conservation, especially in the northern Atlantic forest where it is still degraded at a fast pace. Molecular dating revealed that Phyzelaphryninae originated in Amazonia and dispersed during early Miocene to the Atlantic forest. The two Atlantic forest clades of Adelophryne started to diversify some 7 Ma minimum, while the northern Amazonian Adelophryne diversified much earlier, some 13 Ma minimum. This striking biogeographic pattern coincides with major events that have shaped the face of the South American continent, as we know it today. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Increased expression and activity of inducible nitric oxide synthase (iNOS) may contribute to the pathogenesis of pre-eclampsia (PE) and gestational hypertension (GH). However, no previous study has examined whether genetic polymorphisms in the iNOS gene are associated with PE or GH. We examined whether two functional, clinically relevant iNOS genetic polymorphisms (the C(-1026)A polymorphism, rs2779249, in the promoter region, and the G2087A polymorphism, rs2297518, in exon 16) are associated with GH or with PE. We studied 565 pregnant women: 212 healthy pregnant (HP), 166 pregnant with GH and 187 pregnant with PE. Genotypes were determined by real-time PCR, using the Taqman allele discrimination assay. The PHASE 2.1 program was used to estimate haplotype distributions in the three study groups. We found no significant association between the C(-1026)A polymorphism and PE or GH (P>0.05). However, we found the GA genotype and the A allele for the G2087A polymorphism at higher frequency in PE, but not in GH, compared with HP (P<0.05). The haplotype analysis showed no significant intergroup differences (P>0.05). These findings suggest that iNOS genetic variants may affect the susceptibility to PE, but not to GH. Journal of Human Hypertension (2012) 26, 547-552; doi:10.1038/jhh.2011.65; published online 30 June 2011
Resumo:
Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporinrelated products, but used as an additional carbon and energy source for growth. This low efficiency of side-chain precursor incorporation provides an economic incentive for studying and engineering the metabolism of adipic acid in P. cluysogenum. Chemostat-based transcriptome analysis in the presence and absence of adipic acid confirmed that adipic acid metabolism in this fungus occurs via beta-oxidation. A set of 52 adipate-responsive genes included six putative genes for acyl-CoA oxidases and dehydrogenases, enzymes responsible for the first step of beta-oxidation. Subcellular localization of the differentially expressed acyl-CoA oxidases and dehydrogenases revealed that the oxidases were exclusively targeted to peroxisomes, while the dehydrogenases were found either in peroxisomes or in mitochondria. Deletion of the genes encoding the peroxisomal acyl-CoA oxidase Pc20g01800 and the mitochondrial acyl-CoA dehydrogenase Pc20g07920 resulted in a 1.6- and 3.7-fold increase in the production of the semi-synthetic cephalosporin intermediate adipoyl-6-APA, respectively. The deletion strains also showed reduced adipate consumption compared to the reference strain, indicating that engineering of the first step of beta-oxidation successfully redirected a larger fraction of adipic acid towards cephalosporin biosynthesis. (C) 2012 Elsevier Inc. All rights reserved.
Resumo:
Termites are social cockroaches and this sociality is founded on a high plasticity during development. Three molting types (progressive, stationary and regressive molts) are fundamental to achieve plasticity during alate/sexual development, and they make termites a major challenge to any model on endocrine regulation in insect development. As the endocrine signatures underpinning this plasticity are barely understood, we studied the developmental dynamics and their underlying juvenile hormone OH) titers in a wood-dwelling termite. Cryptotermes secundus, which is characterized by an ancestral life style of living in dead wood and individuals being totipotent in development. The following general pattern elements could be identified during winged sexual development (i) regressive molts were accompanied by longer intermolt periods than other molting types, (ii) JH titers decreased gradually during the developmental transition from larva (immatures without wing buds), to nymph (immatures with wing buds), to winged adult, (iii) in all nymphal stages, the JH titer rose before the next molt and dropped thereafter within the first week, (iv) considerable variation in JH titers occurred in the midphase of the molting cycle of the 2nd and 3rd nymphal instar, inferring that this variation may reflect the underlying endocrine signature of each of the three molting types, (v) the 4th nymphal instar, the shortest of all, seems to be a switch point in development, as nymphs in this stage mainly developed progressively. When comparing these patterns with endocrine signatures seen in cockroaches, the developmental program of Cryprotermes can be interpreted as a co-option and repetitive use of hormonal dynamics of the post dorsal-closure phase of cockroach embryonic development. (C) 2012 Elsevier Ltd. All tights reserved.
Resumo:
Abstract Background The development of protocols for RNA extraction from paraffin-embedded samples facilitates gene expression studies on archival samples with known clinical outcome. Older samples are particularly valuable because they are associated with longer clinical follow up. RNA extracted from formalin-fixed paraffin-embedded (FFPE) tissue is problematic due to chemical modifications and continued degradation over time. We compared quantity and quality of RNA extracted by four different protocols from 14 ten year old and 14 recently archived (three to ten months old) FFPE breast cancer tissues. Using three spin column purification-based protocols and one magnetic bead-based protocol, total RNA was extracted in triplicate, generating 336 RNA extraction experiments. RNA fragment size was assayed by reverse transcription-polymerase chain reaction (RT-PCR) for the housekeeping gene glucose-6-phosphate dehydrogenase (G6PD), testing primer sets designed to target RNA fragment sizes of 67 bp, 151 bp, and 242 bp. Results Biologically useful RNA (minimum RNA integrity number, RIN, 1.4) was extracted in at least one of three attempts of each protocol in 86–100% of older and 100% of recently archived ("months old") samples. Short RNA fragments up to 151 bp were assayable by RT-PCR for G6PD in all ten year old and months old tissues tested, but none of the ten year old and only 43% of months old samples showed amplification if the targeted fragment was 242 bp. Conclusion All protocols extracted RNA from ten year old FFPE samples with a minimum RIN of 1.4. Gene expression of G6PD could be measured in all samples, old and recent, using RT-PCR primers designed for RNA fragments up to 151 bp. RNA quality from ten year old FFPE samples was similar to that extracted from months old samples, but quantity and success rate were generally higher for the months old group. We preferred the magnetic bead-based protocol because of its speed and higher quantity of extracted RNA, although it produced similar quality RNA to other protocols. If a chosen protocol fails to extract biologically useful RNA from a given sample in a first attempt, another attempt and then another protocol should be tried before excluding the case from molecular analysis.
Resumo:
Abstract Background Little is known about the diversity, phylogenetic relationships, and biogeography of trypanosomes infecting non-mammalian hosts. In this study, we investigated the influence of host species and biogeography on shaping the genetic diversity, phylogenetic relationship, and distribution of trypanosomes from South American alligatorids and African crocodilids. Methods Small Subunit rRNA (SSU rRNA) and glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) genes were employed for phylogenetic inferences. Trypanosomes from crocodilians were obtained by haemoculturing. Growth behaviour, morphology, and ultrastructural features complement the molecular description of two new species strongly supported by phylogenetic analyses. Results The inferred phylogenies disclosed a strongly supported crocodilian-restricted clade comprising three subclades. The subclade T. grayi comprised the African Trypanosoma grayi from Crocodylus niloticus and tsetse flies. The subclade T. ralphi comprised alligatorid trypanosomes represented by Trypanosoma ralphi n. sp. from Melanosuchus niger, Caiman crocodilus and Caiman yacare from Brazilian river basins. T. grayi and T. ralphi were sister subclades. The basal subclade T. terena comprised alligatorid trypanosomes represented by Trypanosoma terena n. sp. from Ca. yacare sharing hosts and basins with the distantly genetic related T. ralphi. This subclade also included the trypanosome from Ca. crocodilus from the Orinoco basin in Venezuela and, unexpectedly, a trypanosome from the African crocodilian Osteolaemus tetraspis. Conclusion The close relationship between South American and African trypanosomes is consistent with paleontological evidence of recent transoceanic dispersal of Crocodylus at the Miocene/Pliocene boundaries (4–5 mya), and host-switching of trypanosomes throughout the geological configuration of South American hydrographical basins shaping the evolutionary histories of the crocodilians and their trypanosomes.
Resumo:
Background: Little is known about the diversity, phylogenetic relationships, and biogeography of trypanosomes infecting non-mammalian hosts. In this study, we investigated the influence of host species and biogeography on shaping the genetic diversity, phylogenetic relationship, and distribution of trypanosomes from South American alligatorids and African crocodilids. Methods: Small Subunit rRNA (SSU rRNA) and glycosomal Glyceraldehyde Phosphate Dehydrogenase (gGAPDH) genes were employed for phylogenetic inferences. Trypanosomes from crocodilians were obtained by haemoculturing. Growth behaviour, morphology, and ultrastructural features complement the molecular description of two new species strongly supported by phylogenetic analyses. Results: The inferred phylogenies disclosed a strongly supported crocodilian-restricted clade comprising three subclades. The subclade T. grayi comprised the African Trypanosoma grayi from Crocodylus niloticus and tsetse flies. The subclade T. ralphi comprised alligatorid trypanosomes represented by Trypanosoma ralphi n. sp. From Melanosuchus niger, Caiman crocodilus and Caiman yacare from Brazilian river basins. T. grayi and T. ralphi were sister subclades. The basal subclade T. terena comprised alligatorid trypanosomes represented by Trypanosoma terena n. sp. from Ca. yacare sharing hosts and basins with the distantly genetic related T. ralphi. This subclade also included the trypanosome from Ca. crocodilus from the Orinoco basin in Venezuela and, unexpectedly, a trypanosome from the African crocodilian Osteolaemus tetraspis. Conclusion: The close relationship between South American and African trypanosomes is consistent with paleontological evidence of recent transoceanic dispersal of Crocodylus at the Miocene/Pliocene boundaries (4–5 mya), and host-switching of trypanosomes throughout the geological configuration of South American hydrographical basins shaping the evolutionary histories of the crocodilians and their trypanosomes.