18 resultados para COSMIC STAR-FORMATION


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We discuss the gravitational collapse of a spherically symmetric massive core of a star in which the fluid component is interacting with a growing vacuum energy density. The influence of the variable vacuum in the collapsing core is quantified by a phenomenological beta parameter as predicted by dimensional arguments and the renormalization group approach. For all reasonable values of this free parameter, we find that the vacuum energy density increases the collapsing time, but it cannot prevent the formation of a singular point. However, the nature of the singularity depends on the value of beta. In the radiation case, a trapped surface is formed for beta <= 1/2, whereas for beta >= 1/2, a naked singularity is developed. In general, the critical value is beta = 1-2/3(1 + omega) where omega is the parameter describing the equation of state of the fluid component.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aims. The main theoretical problem for the formation of a Keplerian disk around Be stars is how angular momentum is supplied from the star to the disk, even more so since Be stars probably rotate somewhat subcritically. For instance, nonradial pulsation may transport angular momentum to the stellar surface until (part of) this excess supports the disk-formation/replenishment. The nearby Be star Achernar is presently building a new disk and o ers an excellent opportunity to observe this process from relatively close-up. Methods. Spectra from various sources and epochs are scrutinized to identify the salient stellar parameters characterizing the disk life cycle as defined by H emission. The variable strength of the non-radial pulsation is confirmed, but does not a ect the other results. Results. For the first time it is demonstrated that the photospheric line width does vary in a Be star, by as much as v sin i . 35 km However, unlike assumptions in which a photospheric spin-up accumulates during the diskless phase and then is released into the disk as it is fed, the apparent photospheric spin-up is positively correlated with the appearance of H line emission. The photospheric line widths and circumstellar emission increase together, and the apparent stellar rotation declines to the value at quiescence after the H line emission becomes undetectable

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Binary stars are frequent in the universe, with about 50% of the known main sequence stars being located at a multiple star system (Abt, 1979). Even though, they are universally thought as second rate sites for the location of exo-planets and the habitable zone, due to the difficulties of detection and high perturbation that could prevent planet formation and long term stability. In this work we show that planets in binary star systems can have regular orbits and remain on the habitable zone. We introduce a stability criterium based on the solution of the restricted three body problem and apply it to describe the short period planar and three-dimentional stability zones of S-type orbits around each star of the Alpha Centauri system. We develop as well a semi-analytical secular model to study the long term dynamics of fictional planets in the habitable zone of those stars and we verify that planets on the habitable zone would be in regular orbits with any eccentricity and with inclination to the binary orbital plane up until 35 degrees. We show as well that the short period oscillations on the semi-major axis is 100 times greater than the Earth's, but at all the time the planet would still be found inside the Habitable zone.