24 resultados para Brittle tectonics
Resumo:
Ethylene-vinyl acetate copolymer (EVA) with 19% of vinyl acetate and its derivatives modified by hydrolysis of 50 and 100% of the initial vinyl acetate groups were used to produce blends with thermoplastic starch (TPS) plasticized with 30 wt% glycerol. The blends were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy. X-ray diffraction, water absorption, stress-strain mechanical tests, dynamic mechanical analysis and thermogravimetric analysis. In contrast to the blends with unmodified EVA. those made with hydrolyzed EVA were compatible, as demonstrated by the brittle fracture surface analysis and the results of thermal and mechanical tests. The mechanical characteristics and water absorption of the TPS were improved even with a small addition (2.5 wt%) of hydrolyzed EVA. The glass transition temperature rose with the degree of hydrolysis of EVA by 40 and 50 degrees, for the EVA with 50 and 100% hydrolysis, respectively. The addition of hydrolyzed EVA proved to be an interesting approach to improving TPS properties, even when very small quantities were used, such as 2.5 wt%. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Witzkeite, ideally Na4K4Ca(NO3)(2)(SO4)(4)center dot 2H(2)O, is a new mineral found in the oxidation zone of the guano mining field at Punta de Lobos, Tarapaca region, Chile. It occurs as colorless, tabular crystals up to 140 mu m in length, associated with dittmanite and nitratine. Witzkeite is colorless and transparent, with a white streak and a vitreous luster. It is brittle, with Molts hardness 2 and distinct cleavage on {001}. Measured density is 2.40(2) g/cm(3), calculated density is 2.403 g/cm(3). Witzkeite is biaxial (-) with refractive indexes alpha = 1.470(5), beta = 1.495(5), gamma = 1.510(5), measured 2V = 50-70 degrees. The empirical composition is (electron microprobe, mean of five analyses, H2O, CO2, and N2O5 by gas chromatography; wt%): Na2O 12.83, K2O 22.64, CaO 7.57, FeO 0.44, SO3 39.96, N2O5 12.7, H2O 4.5, total 100.64; CO2 was not detected. The chemical formula, calculated based on 24 O, is: Na3.40K3.95Ca1.11Fe0.05(NO3)(1.93)(SO4)(4.10)(H4.10O1.81). Witzkeite is monoclinic, space group C2/c, with unit-cell parameters: a = 24.902(2), b = 5.3323(4), c = 17.246(1) angstrom, beta = 94.281(7)degrees, V = 2283.6(3) angstrom(3) (Z = 4). The crystal structure was solved using single-crystal X-ray diffraction data and refined to R-1(F) = 0.043. Witzkeite belongs to a new structure type and is noteworthy for the very rare simultaneous presence of sulfate and nitrate groups. The eight strongest X-ray powder-diffraction lines [d in angstrom (I in %) (h k l)] are: 12.38 (100) (2 0 0), 4.13 (19) (6 0 0), 3.10 (24) (8 0 0), 2.99 (7) ((8) over bar 02), 2.85 (6) (8 02), 2.69 (9) ((7) over bar 1 3), 2.48 (12) (10 0 0), and 2.07 (54) (12 0 0). The IR spectrum of witzkeite was collected in the range 390-4000 cm(-1). The spectrum shows the typical bands of SO42- ions (1192, 1154, 1116, 1101, 1084, 993, 634, and 617 cm(-1)) and of NO3- ions (1385, 1354, 830, 716, and 2775 cm(-1)). Moreover, a complex pattern of bands related to H2O is visible (bands at 3565, 3419, 3260, 2405, 2110, 1638, and 499 cm(-1)). The IR spectrum is discussed in detail.
Resumo:
Southern Madagascar is the core of a >1 million km(2) Gondwanan metasedimentary belt that forms much of the southern East African Orogen of eastern Africa, Madagascar, southern India and Sri Lanka. Here the Vohibory Series yielded U-Pb isotopic data from detrital zircon cores that indicate that it was deposited in the latest Tonian to late Cryogenian (between -900 and 640 Ma). The deposition of the Graphite and Androyen Series protoliths is poorly constrained to between the late Palaeoproterozoic and the Cambrian (similar to 1830-530 Ma). The Vohibory Series protoliths were sourced from very restricted-aged sources with a maximum age range between 910 and 760 Ma. The Androyen and Graphite Series protoliths were sourced from Palaeoproterozoic rocks ranging in age between 2300 and 1800 Ma. The best evidence of the timing of metamorphism in the Vohibory Series is a weighted mean Pb-206/U-238 age of 642 +/- 8 Ma from 3 analyses of zircon from sample M03-01. A considerably younger Pb-206/U-238 metamorphic age of 531 +/- 7 Ma is produced from 10 analyses of zircon from sample M03-28 in the Androyen Series. This similar to 110 Ma difference in age is correlated with the early East African Orogeny affecting the west of Madagascar along with its type area in East Africa, whereas the Cambrian Malagasy Orogeny affected the east of Madagascar and southern India during the final suturing of the Mozambique Ocean. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
Resumo:
Copaifera langsdorffii Desf. commonly known as "copaiba", produce a commercially valuable oil-resin that is extensively used in folk medicine for anti-inflammatory, antimicrobial and antiseptic purposes. We have found the hydroalcoholic extract of this plant leaf has the potential to treat urolithiasis, a problem affecting similar to 7% of the population. To isolate the functional compounds C. langsdorffii leaves were dried, ground, and macerated in a hydroalcoholic solution 7:3 to produce a 16.8% crude extract after solvent elimination. Urolithiasis was induced by introduction of a calcium oxalate pellet (CaOx) into the bladders of adult male Wistar rats. The treated groups received the crude extract by oral gavage at 20 mg/kg body weight daily for 18 days. Extract treatment started 30 days after CaOx seed implantation. To monitor renal function sodium, potassium and creatinine concentrations were analyzed in urine and plasma, and were found to be in the normal range. Analyses of pH, magnesium, phosphate, calcium, uric acid, oxalate and citrate levels were evaluated to determine whether the C. langsdorffii extract may function as a stone formation prevention agent. The HPLC analysis of the extract identified flavonoids quercitrin and afzelin as the major components. Animals treated with C. langsdorffii have increased levels of magnesium and decreased levels of uric acid in urinary excretions. Treated animals have a significant decrease in the mean number of calculi and a reduction in calculi mass. Calculi taken from extract treated animals were more brittle and fragile than calculi from untreated animals. Moreover, breaking calculi from untreated animals required twice the amount of pressure as calculi from treated animals (6.90 +/- A 3.45 vs. 3.00 +/- A 1.51). The extract is rich in flavonoid heterosides and other phenolic compounds. Therefore, we hypothesize this class of compounds might contribute significantly to the observed activity.
Resumo:
The Apiai gabbro-norite is a massive fine-grained Neoproterozoic intrusion emplaced in a core of synformal structure that deforms low-grade marine metasedimentary rocks of the Ribeira Belt of south-eastern Brazil. The lack of visible magmatic layering or any internal fabric has been a major limitation in deciding whether the emplacement occurred before or after the regional folding. To assist in the tectonic interpretations, we combine low-field anisotropy of magnetic susceptibility (AMS) and silicate shape preferred orientation (SPO) to reveal the internal structure of the mafic intrusion. Magnetic data indicate a mean susceptibility of about 10(-2) SI and a mean anisotropy degree (P) of about 1.08, essentially yielded by titanomagnetite. The magnetic and silicate foliations for P >= 1.10 are parallel to each other, while the lineations tend to scatter on the foliation plane, in agreement with the dominant oblate symmetry of the AMS and SPO ellipsoids. For lower P values, the magnetic and silicate fabrics vary from coaxial to oblique, and for P <= 1.05, their shapes and orientations can be quite distinct. The crystal size distribution (CSD) of plagioclase for P > 1.05 is log linear, in agreement with a bulk simple crystallisation history. These results combined show that for a strong SPO, corresponding to a magnetic anisotropy above 1.10, AMS is a reliable indicator of the magmatic fabric. They indicate that the Apiai gabbro-norite consists of sill-like body that was inclined gently to the north by the regional folding.
Resumo:
Several publications have contributed to improve the stratigraphy of the Paraíba Basin in northeastern Brazil. However, the characterization and distribution of sedimentary units in onshore areas of this basin are still incomplete, despite their significance for reconstructing the tectono-sedimentary evolution of the South American passive margin. This work provides new information to differentiate among lithologically similar strata, otherwise entirely unrelated in time. This approach included morphological, sedimentological and stratigraphic descriptions based on surface and sub-surface data integrated with remote sensing, optically stimulated luminescence dating, U+Th/He dating of weathered goethite, and heavy mineral analysis. Based on this study, it was possible to show that Cretaceous units are constrained to the eastern part of the onshore Paraíba Basin. Except for a few outcrops of carbonatic rocks nearby the modern coastline, deposits of this age are not exposed to the surface in the study area. Instead, the sedimentary cover throughout the basin is constituted by mineralogically and chronologically distinctive deposits, inserted in the Barreiras Formation and mostly in the Post-Barreiras Sediments, of early/middle Miocene and Late Pleistocene-Holocene ages, respectively. The data presented in this work support tectonic deformation as a factor of great relevance to the distribution of the sedimentary units of the Paraíba Basin.
Resumo:
This paper presents a comparison of descriptive statistics obtained for brittle structural lineaments extracted manually from LANDSAT images and shaded relief images from SRTM 3 DEM at 1:100, 000 and 1:500, 000 scales. The selected area is located in the southern of Brazil and comprises Precambrian rocks and stratigraphic units of the Paraná Basin. The application of this methodology shows that the visual interpretation depends on the kind of remote sensing image. The resulting descriptive statistics obtained for lineaments extracted from the images do not follow the same pattern according to the scale adopted. The main direction obtained for Proterozoic rocks using both image types at a 1:500, 000 scale are close to NS±10, whereas at a 1:100, 000 scale N45E was obtained for shaded relief images from SRTM 3 DEM and N10W for LANDSAT images. The Paleozoic sediments yielded the best results for the different images and scales (N50W). On the other hand, the Mesozoic igneous rocks showed greatest differences, the shaded relief images from SRTM 3 DEM images highlighting NE structures and the LANDSAT images highlighting NW structures. The accumulated frequency demonstrated high similarity between products for each image type no matter the scale, indicating that they can be used in multiscale studies. Conversely, major differences were found when comparing data obtained using shaded relief images from SRTM 3 DEM and Landsat images at a 1:100, 000 scale.
Resumo:
Neoproterozoic geologic and geotectonic processes were of utmost importance in forming and structuring the basement framework of the South-American platform. Two large domains with distinct evolutionary histories are identified with respect to the Neoproterozoic era: the northwest-west (Amazonian craton and surroundings) and the central-southeast (the extra-Amazonian domain). In the first domain, Neoproterozoic events occurred only locally and were of secondary significance, and the geologic events, processes, and structures of the pre-Neoproterozoic (and syn-Brasiliano) cratonic block were much more influential. In the second, the extra-Amazonian domain, the final evolution, structures and forms are assigned to events related to the development of a complex net of Neoproterozoic mobile belts. These in turn resulted in strong reworking of the older pre-Neoproterozoic basement. In this domain, four distinct structural provinces circumscribe or are separated by relatively small pre- Neoproterozoic cratonic nuclei, namely the Pampean, Tocantins, Borborema and Mantiqueira provinces. These extra-Amazonian provinces were formed by a complex framework of orogenic branching systems following a diversified post-Mesoproterozoic paleogeographic scenario. This scenario included many types of basement inliers as well as a diversified organization of accretionary and collisional orogens. The basement inliers date from the Archean toMesoproterozoic periods and are different in nature. The escape tectonics that operated during the final consolidation stages of the provinces were important to and responsible for the final forms currently observed. These latest events, which occurred from the Late Ediacaran to the Early Ordovician, present serious obstacles to paleogeographic reconstructions. Two groups of orogenic collage systems are identified. The older system from the Tonian (>850 Ma) period is of restricted occurrence and is not fully understood due to strong reworking subsequent to Tonian times. The second group of orogenies is more extensive and more important. Its development began with diachronic taphrogenic processes in the Early Cryogenian period (ca. 850e750 Ma) and preceded a complex scenario of continental, transitional and oceanic basins. Subsequent orogenies (post 800 Ma) were also created by diachronic processes that ended in the Early Ordovician. More than one orogeny (plate interaction) can be identified either in space or in time in every province. The orogenic processes were not necessarily synchronous in different parts of the orogenic system, even within the same province. This particular group of orogenic collage events is known as the “Brasiliano”. All of the structural provinces of the extra-Amazonian domain exhibit final events that are marked by extrusion processes, are represented by long lineaments, and are fundamental to unraveling the structural history of the Phanerozoic sedimentary basins.
Resumo:
Fluorcalciomicrolite, (Ca,Na,□)2Ta2O6F, is a new microlite-group, pyrochlore supergroup mineral approved by the CNMNC (IMA 2012-036). It occurs as an accessory mineral in the Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Associated minerals include: microcline, albite, quartz, muscovite, spodumene, "lepidolite", cassiterite, tantalite-(Mn), monazite-(Ce), fluorite, "apatite", beryl, "garnet", epidote, magnetite, gahnite, zircon, "tourmaline", bityite, hydrokenomicrolite, and other microlite-group minerals under study. Fluorcalciomicrolite occurs as euhedral, untwinned, octahedral crystals 0.1-1.5 mm in size, occasionally modified by rhombododecahedral faces. The crystals are colourless and translucent; the streak is white, and the lustre is adamantine to resinous. It does not fluoresce under ultraviolet light. Mohs' hardness is 4½- 5, tenacity is brittle. Cleavage is not observed; fracture is conchoidal. The calculated density is 6.160 g/cm3. The mineral is isotropic, ncalc. = 1.992. The Raman spectrum is dominated by bands of B-X octahedral bond stretching and X-B-X bending modes.The chemical composition (n = 6) is (by wavelength dispersive spectroscopy, H2O calculated to obtain charge balance, wt.%): Na2O 4.68, CaO 11.24, MnO 0.01, SrO 0.04, BaO 0.02, SnO2 0.63, UO2 0.02, Nb2O5 3.47, Ta2O5 76.02, F 2.80, H2O 0.48, O=F -1.18, total 98.23. The empirical formula, based on 2 cations at the B site, is (Ca1.07Na0.81□0.12)∑2.00(Ta1.84Nb0.14Sn0.02)∑2.00 [O5.93(OH)0.07]6.00[F0.79(OH)0.21]. The strongest eight X-ray powder-diffraction lines [d in Å(I)(hkl)] are: 5.997(59)(111), 3.138(83)(311), 3.005(100)(222), 2.602(29)(400), 2.004(23)(511), 1.841(23)(440), 1.589(25)(533), and 1.504(24)(444). The crystal structure refinement (R1 = 0.0132) gave the following data: cubic, Fd3m, a = 10.4191(6) Å, V = 1131.07(11) Å3, Z = 8.