18 resultados para Bose-Einstein condensates (BEC)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Working with nuclear magnetic resonance (NMR) in quadrupolar spin systems, in this paper we transfer the concept of atomic coherent state to the nuclear spin context, where it is referred to as pseudonuclear spin coherent state (pseudo-NSCS). Experimentally, we discuss the initialization of the pseudo- NSCSs and also their quantum control, implemented by polar and azimuthal rotations. Theoretically, we compute the geometric phases acquired by an initial pseudo-NSCS on undergoing three distinct cyclic evolutions: (i) the free evolution of the NMR quadrupolar system and, by analogy with the evolution of the NMR quadrupolar system, that of (ii) single-mode and (iii) two-mode Bose-Einstein Condensate like system. By means of these analogies, we derive, through spin angular momentum operators, results equivalent to those presented in the literature for orbital angular momentum operators. The pseudo-NSCS description is a starting point to introduce the spin squeezed state and quantum metrology into nuclear spin systems of liquid crystal or solid matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Josephson junction model is applied to the experimental implementation of classical bifurcation in a quadrupolar nuclear magnetic resonance system. There are two regimes, one linear and one nonlinear, which are implemented by the radio-frequency and the quadrupolar terms of the Hamiltonian of a spin system, respectively. These terms provide an explanation of the symmetry breaking due to bifurcation. Bifurcation depends on the coexistence of both regimes at the same time in different proportions. The experiment is performed on a lyotropic liquid crystal sample of an ordered ensemble of 133Cs nuclei with spin I = 7/2 at room temperature. Our experimental results confirm that bifurcation happens independently of the spin value and of the physical system. With this experimental spin scenario, we confirm that a quadrupolar nuclei system could be described analogously to a symmetric two-mode Bose-Einstein condensate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present an analytic description of numerical results for the Landau-gauge SU(2) gluon propagator D(p(2)), obtained from lattice simulations (in the scaling region) for the largest lattice sizes to date, in d = 2, 3 and 4 space-time dimensions. Fits to the gluon data in 3d and in 4d show very good agreement with the tree-level prediction of the refined Gribov-Zwanziger (RGZ) framework, supporting a massive behavior for D(p(2)) in the infrared limit. In particular, we investigate the propagator's pole structure and provide estimates of the dynamical mass scales that can be associated with dimension-two condensates in the theory. In the 2d case, fitting the data requires a noninteger power of the momentum p in the numerator of the expression for D(p(2)). In this case, an infinite-volume-limit extrapolation gives D(0) = 0. Our analysis suggests that this result is related to a particular symmetry in the complex-pole structure of the propagator and not to purely imaginary poles, as would be expected in the original Gribov-Zwanziger scenario.