17 resultados para Bipartite Folding


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We developed a stochastic lattice model to describe the vector-borne disease (like yellow fever or dengue). The model is spatially structured and its dynamical rules take into account the diffusion of vectors. We consider a bipartite lattice, forming a sub-lattice of human and another occupied by mosquitoes. At each site of lattice we associate a stochastic variable that describes the occupation and the health state of a single individual (mosquito or human). The process of disease transmission in the human population follows a similar dynamic of the Susceptible-Infected-Recovered model (SIR), while the disease transmission in the mosquito population has an analogous dynamic of the Susceptible-Infected-Susceptible model (SIS) with mosquitos diffusion. The occurrence of an epidemic is directly related to the conditional probability of occurrence of infected mosquitoes (human) in the presence of susceptible human (mosquitoes) on neighborhood. The probability of diffusion of mosquitoes can facilitate the formation of pairs Susceptible-Infected enabling an increase in the size of the epidemic. Using an asynchronous dynamic update, we study the disease transmission in a population initially formed by susceptible individuals due to the introduction of a single mosquito (human) infected. We find that this model exhibits a continuous phase transition related to the existence or non-existence of an epidemic. By means of mean field approximations and Monte Carlo simulations we investigate the epidemic threshold and the phase diagram in terms of the diffusion probability and the infection probability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein disulfide isomerase (PDI) and its homologs are oxidoreductases facilitating protein folding in the ER. Endo-PDI (also termed ERp46) is highly expressed in endothelial cells. It belongs to the PDI family but its physiological function is largely unknown. We studied the role of Endo-PDI in endothelial angiogenic responses. Stimulation of human umbilical vein endothelial cells (with TNFα (10ng/ml) increased ERK1/2 phosphorylation. This effect was largely attenuated by Endo-PDI siRNA, whereas JNK and p38 MAP kinase phosphorylation was Endo-PDI independent. Similarly, TNFα-stimulated NF-κB signaling determined by IκBα degradation as well as TNFα-induced ICAM expression was unaffected by Endo-PDI siRNA. The action of Endo-PDI was not mediated by extracellular thiol exchange or cell surface PDI as demonstrated by nonpermeative inhibitors and PDI-neutralizing antibody. Moreover, exogenously added PDI failed to restore ERK1/2 activation after Endo-PDI knockdown. This suggests that Endo-PDI acts intracellularly potentially by maintaining the Ras/Raf/MEK/ERK pathway. Indeed, knockdown of Endo-PDI attenuated Ras activation measured by G-LISA and Raf phosphorylation. ERK activation influences gene expression by the transcriptional factor AP-1, which controls MMP-9 and cathepsin B, two proteases required for angiogenesis. TNFα-stimulated MMP-9 and cathepsin B induction was reduced by silencing of Endo-PDI. Accordingly, inhibition of cathepsin B or Endo-PDI siRNA blocked the TNFα-stimulated angiogenic response in the spheroid outgrowth assays. Moreover ex vivo tube formation and in vivo Matrigel angiogenesis in response to TNFα were attenuated by Endo-PDI siRNA. In conclusion, our study establishes Endo-PDI as a novel, important mediator of AP-1-driven gene expression and endothelial angiogenic function