26 resultados para Binary and ternary correlations
Resumo:
Background: Cholesteryl ester transfer protein (CETP) plays a major role in lipid metabolism, but studies on the association of CETP polymorphisms with risks of cardiovascular disease are inconsistent. This study investigated whether the CETP gene I405V and Taq1B polymorphisms modified subclinical atherosclerosis in an asymptomatic Brazilian population sample. Methods: The polymorphisms were analyzed using polymerase chain reaction in 207 adult volunteers. Serum lipid profiles, oxLDL Ab titers, C-reactive protein and tumor necrosis factor-a concentrations and CETP and phospholipid transfer protein (PLTP) activities were determined, and common carotid artery intima-media thickness (cIMT) was measured using ultrasonography. Results: No differences in cIMT were observed between the presence or absence of the minor B2 and V alleles in either polymorphism. However, inverse correlations between mean cIMT and CETP activity in the presence of these polymorphisms were observed, and positive correlations of these polymorphisms with PLTP activity and oxLDL Ab titers were identified. Moreover, logistic multivariate analysis revealed that the presence of the B2 allele was associated with a 5.1-fold (CI 95%, OR: 1.26 - 21.06) increased risk for cIMT, which was equal and above the 66th percentile and positively interacted with age. However, no associations with the V allele or CETP and PLTP activities were observed. Conclusions: None of the studied parameters, including CETP activity, explained the different relationships between these polymorphisms and cIMT, suggesting that other non-determined factors were affected by the genotypes and related to carotid atherosclerotic disease.
Resumo:
The transient and equilibrium properties of dynamics unfolding in complex systems can depend critically on specific topological features of the underlying interconnections. In this work, we investigate such a relationship with respect to the integrate-and-fire dynamics emanating from a source node and an extended network model that allows control of the small-world feature as well as the length of the long-range connections. A systematic approach to investigate the local and global correlations between structural and dynamical features of the networks was adopted that involved extensive simulations (one and a half million cases) so as to obtain two-dimensional correlation maps. Smooth, but diverse surfaces of correlation values were obtained in all cases. Regarding the global cases, it has been verified that the onset avalanche time (but not its intensity) can be accurately predicted from the structural features within specific regions of the map (i.e. networks with specific structural properties). The analysis at local level revealed that the dynamical features before the avalanches can also be accurately predicted from structural features. This is not possible for the dynamical features after the avalanches take place. This is so because the overall topology of the network predominates over the local topology around the source at the stationary state.
Resumo:
PURPOSE: To evaluate the sulcus anatomy and possible correlations between sulcus diameter and white-to-white (WTW) diameter in pseudophakic eyes, data that may be important in the stability of add-on intraocular lenses (IOLs). SETTING: University Eye Hospital, Tuebingen, Germany. DESIGN: Case series. METHODS: In pseudophakic eyes, the axial length (AL) and horizontal WTW were measured by the IOLMaster device. Cross-sectional images were obtained with a 50 MHz ultrasound biomicroscope on the 4 meridians: vertical, horizontal (180 degrees), temporal oblique, and nasal oblique. Sulcus-to-sulcus (STS), angle-to-angle (ATA), and sclera-to-sclera (ScTSc) diameters were measured. The IOL optic diameter (6.0 mm) served as a control. To test reliability, optic measurements were repeated 5 times in a subset of eyes. RESULTS: The vertical ATA and STS diameters were statistically significantly larger than the horizontal diameter (P=.0328 and P=.0216, respectively). There was no statistically significant difference in ScTSc diameters. A weak correlation was found between WTW and horizontal ATA (r = 0.5766, P<.0001) and between WTW and horizontal STS (r = 0.5040, P=.0002). No correlation was found between WTW and horizontal ScTSc (r = 0.2217, P=.1217). CONCLUSIONS: The sulcus anatomy had a vertical oval shape with the vertical meridian being the largest, but it also had variation in the direction of the largest meridian. The WTW measurements showed a weak correlation with STS. In pseudophakic eyes, Soemmerring ring or a bulky haptic may affect the ciliary sulcus anatomy.
Resumo:
Introduction: The development of periapical granulomas is dependent on the host response and involves Th1, Th2, Th17, and Treg-related cytokines. The discovery of new Th9 and Th22 subsets, with important immunomodulatory roles mediated by interleukin (IL)-9 and IL-22, respectively, emphasizes the need for reevaluation of current cytokine paradigms in context of periapical lesions. We investigated the expression of IL-9 and IL-22 in active and stable human granulomas and throughout experimental lesion development in mice. Methods: Periapical granulomas (N = 83) and control specimens (N = 24) were evaluated regarding the expression of IL-9 and IL-22 via realtime polymerase chain reaction. Experimental periapical lesions were induced in mice (pulp exposure and bacterial inoculation) and the lesions evolution correlation with IL-9 and IL-22 expression kinetics was evaluated. Results: IL-9 and IL-22 mRNA expression was higher in periapical lesions than in control samples; higher levels of IL-9 and IL-22 were observed in inactive than in active lesions. In the experimental lesions model, increasing levels of IL-9 and IL-22 mRNA were detected in the lesions, and inverse correlations were found between IL-9 and IL-22 and the increase of lesion area in the different time point intervals. Conclusions: Our results suggest that Th9 and Th22 pathways may contribute to human and experimental periapical lesion stability
Resumo:
Blood pressure (BP) and physical activity (PA) levels are inversely associated. Since genetic factors account for the observed variation in each of these traits, it is possible that part of their association may be related to common genetic and/or environmental influences. Thus, this study was designed to estimate the genetic and environmental correlations of BP and PA phenotypes in nuclear families from Muzambinho, Brazil. Families including 236 offspring (6 to 24 years) and their 82 fathers and 122 mothers (24 to 65 years) were evaluated. BP was measured, and total PA (TPA) was assessed by an interview (commuting, occupational, leisure time, and school time PA). Quantitative genetic modeling was used to estimate maximal heritability (h²), and genetic and environmental correlations. Heritability was significant for all phenotypes (systolic BP: h² = 0.37 ± 0.10, P < 0.05; diastolic BP: h² = 0.39 ± 0.09, P < 0.05; TPA: h² = 0.24 ± 0.09, P < 0.05). Significant genetic (r g) and environmental (r e) correlations were detected between systolic and diastolic BP (r g = 0.67 ± 0.12 and r e = 0.48 ± 0.08, P < 0.05). Genetic correlations between BP and TPA were not significant, while a tendency to an environmental cross-trait correlation was found between diastolic BP and TPA (r e = -0.18 ± 0.09, P = 0.057). In conclusion, BP and PA are under genetic influences. Systolic and diastolic BP share common genes and environmental influences. Diastolic BP and TPA are probably under similar environmental influences.
Resumo:
The orbits of the stars in the disk of the Galaxy, and their passages through the Galactic spiral arms, are a rarely mentioned factor of biosphere stability which might be important for long-term planetary climate evolution, with a possible bearing on mass extinctions. The Sun lies very near the co-rotation radius, where stars revolve around the Galaxy in the same period as the density wave perturbations of the spiral arms. conventional wisdom generally considers that this status makes for few passages through the spiral arms. Controversy still surrounds whether time spent inside or around spiral arms is dangerous to biospheres and conductive to mass extinctions. Possible threats include giant molecular clouds disturbing the Oort comet cloud and provoking heavy bombardment: a higher exposure to cosmic rays near star forming regions triggering increased cloudiness in Earth atmosphere and ice ages; and the desctruction of Earth's ozone layer posed by supernova explosiosn. We present detailed calculations of the history of spiral arm passages for all 212 solar-type stars nearer than 20 parsecs, including the total time spent inside armsin the last 500 Myr, when the spiral arm position can be traced with good accuracy. We found that there is a large diversity of stellar orbits in the solar neighborhood, and the time fraction spent inside spiral arms can vary from a few percent to nearly half the time. The Sun, despite its proximity to the galactic co-rotation radius, has exceptionally low eccentricity and a low vertical velocity component, and therefore spends 30% of its lifetime crossing the spiral arms, more than most nearby stars. We discuss the possible implications of this fact to the long-term habitability of the Earth, and possible correlations of the Sun's passage through the spiral arms with the five great mass extinctions of the Earth's biosphere from the Late Ordovician to the Cretaceous-Tertiary.
Resumo:
Background: This study assessed the relationship between lower limb hemodynamics and metabolic parameters with walking tolerance in patients with intermittent claudication (IC). Patients and methods: Resting ankle-brachial index (ABI), baseline blood flow (BF), BF response to reactive hyperemia (BFRH), oxygen uptake (VO2), initial claudication distance (ICD) and total walking distance (TWD) were measured in 28 IC patients. Pearson and Spearman correlations were calculated. Results: ABI, baseline BF and BF response to RH did not correlate with ICD or TWD. VO2 at first ventilatory threshold and VO(2)peak were significantly and positively correlated with ICD (r = 0.41 and 0.54, respectively) and TWD (r = 0.65 and 0.71, respectively). Conclusions: VO(2)peak and VO2 at first ventilatory threshold, but not ABI, baseline BF and BFHR were associated with walking tolerance in IC patients. These results suggest that VO2 at first ventilatory threshold may be useful to evaluate walking tolerance and improvements in IC patients.
Resumo:
We simulate top-energy Au + Au collisions using ideal hydrodynamics in order to make the first comparison to the complete set of midrapidity flow measurements made by the PHENIX Collaboration. A simultaneous calculation of nu(2), nu(3), nu(4), and the first event-by-event calculation of quadrangular flow defined with respect to the nu(2) event plane (nu(4){Psi(2)}) gives good agreement with measured values, including the dependence on both transverse momentum and centrality. This provides confirmation that the collision system is indeed well described as a quark-gluon plasma with an extremely small viscosity and that correlations are dominantly generated from collective effects. In addition, we present a prediction for nu(5).
Resumo:
Background Mindful-based interventions improve functioning and quality of life in fibromyalgia (FM) patients. The aim of the study is to perform a psychometric analysis of the Spanish version of the Mindful Attention Awareness Scale (MAAS) in a sample of patients diagnosed with FM. Methods The following measures were administered to 251 Spanish patients with FM: the Spanish version of MAAS, the Chronic Pain Acceptance Questionnaire, the Pain Catastrophising Scale, the Injustice Experience Questionnaire, the Psychological Inflexibility in Pain Scale, the Fibromyalgia Impact Questionnaire and the Euroqol. Factorial structure was analysed using Confirmatory Factor Analyses (CFA). Cronbach's α coefficient was calculated to examine internal consistency, and the intraclass correlation coefficient (ICC) was calculated to assess the test-retest reliability of the measures. Pearson’s correlation tests were run to evaluate univariate relationships between scores on the MAAS and criterion variables. Results The MAAS scores in our sample were low (M = 56.7; SD = 17.5). CFA confirmed a two-factor structure, with the following fit indices [sbX2 = 172.34 (p < 0.001), CFI = 0.95, GFI = 0.90, SRMR = 0.05, RMSEA = 0.06. MAAS was found to have high internal consistency (Cronbach’s α = 0.90) and adequate test-retest reliability at a 1–2 week interval (ICC = 0.90). It showed significant and expected correlations with the criterion measures with the exception of the Euroqol (Pearson = 0.15). Conclusion Psychometric properties of the Spanish version of the MAAS in patients with FM are adequate. The dimensionality of the MAAS found in this sample and directions for future research are discussed.
Correlações de Pearson e canônica entre componentes da matéria seca da forragem e sementes de azevém
Resumo:
O melhoramento genético de plantas forrageiras é fundamental para a intensificação da pecuária. Este trabalho foi realizado com o objetivo de avaliar a correlação simples de Pearson entre os componentes produtivos da matéria seca da forragem e de sementes para genótipos de azevém. Cinco genótipos de azevém, cultivados em cinco datas de semeadura, com diferentes números de cortes (variando de um a quatro), foram usados no delineamento blocos ao acaso com quatro repetições em Santa Maria, RS. Pastagens de azevém com uma menor produtividade total de matéria seca, mas composta por uma quantidade maior de folhas e menor de colmo, com maior teor proteico e menor teor de fibra em detergente neutro determinam maior rendimento de sementes, comprimento de espigas e peso de mil sementes, e menor número de espigas. A associação entre componentes do rendimento da matéria seca e do rendimento de semente é critério de fundamental importância na seleção de genótipos para o azevém, pois o rendimento de sementes correlaciona-se positivamente com a produção de matéria seca de folhas, teor de proteína bruta, comprimento de espiga e peso de mil sementes.
Resumo:
We present two-dimensional (2D) two-particle angular correlations measured with the STAR detector on relative pseudorapidity eta and azimuth phi for charged particles from Au-Au collisions at root s(NN) = 62 and 200 GeV with transverse momentum p(t) >= 0.15 GeV/c, vertical bar eta vertical bar <= 1, and 2 pi in azimuth. Observed correlations include a same-side (relative azimuth <pi/2) 2D peak, a closely related away-side azimuth dipole, and an azimuth quadrupole conventionally associated with elliptic flow. The same-side 2D peak and away-side dipole are explained by semihard parton scattering and fragmentation (minijets) in proton-proton and peripheral nucleus-nucleus collisions. Those structures follow N-N binary-collision scaling in Au-Au collisions until midcentrality, where a transition to a qualitatively different centrality trend occurs within one 10% centrality bin. Above the transition point the number of same-side and away-side correlated pairs increases rapidly relative to binary-collision scaling, the eta width of the same-side 2D peak also increases rapidly (eta elongation), and the phi width actually decreases significantly. Those centrality trends are in marked contrast with conventional expectations for jet quenching in a dense medium. The observed centrality trends are compared to perturbative QCD predictions computed in HIJING, which serve as a theoretical baseline, and to the expected trends for semihard parton scattering and fragmentation in a thermalized opaque medium predicted by theoretical calculations and phenomenological models. We are unable to reconcile a semihard parton scattering and fragmentation origin for the observed correlation structure and centrality trends with heavy-ion collision scenarios that invoke rapid parton thermalization. If the collision system turns out to be effectively opaque to few-GeV partons the present observations would be inconsistent with the minijet picture discussed here. DOI: 10.1103/PhysRevC.86.064902