22 resultados para Bacillus thuringiensis var. israelensis
Resumo:
We undertook a study of Porphyra acanthophora var. brasiliensis to determine its responses under ambient conditions, photosynthetically active radiation (PAR), and PAR+UVBR (ultraviolet radiation-B) treatment, focusing on changes in ultrastructure, and cytochemistry. Accordingly, control ambient samples were collected in the field, and two different treatments were performed in the laboratory. Plants were exposed to PAR at 60 mu mol photons m(-2) s(-1) and PAR+UVBR at 0.35 W m(-2) for 3 h per day during 21 days of in vitro cultivation. Confocal laser scanning microscopy analysis of the vegetative cells showed single stellate chloroplast in ambient and PAR samples, but in PAR+UVBR-exposed plants, the chloroplast showed alterations in the number and form of arms. Under PAR+UVBR treatment, the thylakoids of the chloroplasts were disrupted, and an increase in the number of plastoglobuli was observed, in addition to mitochondria, which appeared with irregular, disrupted morphology compared to ambient and PAR samples. After UVBR exposure, the formation of carpospores was also observed. Plants under ambient conditions, as well as those treated with PAR and PAR+UVBR, all showed different concentrations of enzymatic response, including glutathione peroxidase and reductase activity. In summary, the present study demonstrates that P. acanthophora var. brasiliensis shows the activation of distinct mechanisms against natural radiation, PAR and PAR+UVBR.
Resumo:
We investigated the effects of viable, extended freeze-drying (EFD) or heat-killed (HK) Mycobacterium bovis bacillus CalmetteGuerin (BCG) in respiratory burst activity, gene expression of CYBB and NCF1 encoding components of the human phagocyte nicotinamide adenine dinucleotide (NADPH) oxidase, TLR2 expression, and in IL-10 and TNF-a cytokine production by human peripheral blood mononuclear cells (PBMCs). Viable BCG significantly inhibited TLR2 and CYBB gene expression, as well as superoxide release by human PBMC. All BCG stimuli augmented IL-10 release, but only HK BCG or viable BCG increased TNF-a release by PBMCs. Our studies show that viable BCG can impair the NADPH oxidase system activation and the TLR2 route in human PBMCs. As well, different BCG preparations can distinctly influence cytokine production by human PBMCs.
Resumo:
Xylanases (EC 3.2.1.8 endo-1,4-glycosyl hydrolase) catalyze the hydrolysis of xylan, an abundant hemicellulose of plant cell walls. Access to the catalytic site of GH11 xylanases is regulated by movement of a short beta-hairpin, the so-called thumb region, which can adopt open or closed conformations. A crystallographic study has shown that the D11F/R122D mutant of the GH11 xylanase A from Bacillus subtilis (BsXA) displays a stable "open" conformation, and here we report a molecular dynamics simulation study comparing this mutant with the native enzyme over a range of temperatures. The mutant open conformation was stable at 300 and 328 K, however it showed a transition to the closed state at 338 K. Analysis of dihedral angles identified thumb region residues Y113 and T123 as key hinge points which determine the open-closed transition at 338 K. Although the D11F/R122D mutations result in a reduction in local inter-intramolecular hydrogen bonding, the global energies of the open and closed conformations in the native enzyme are equivalent, suggesting that the two conformations are equally accessible. These results indicate that the thumb region shows a broader degree of energetically permissible conformations which regulate the access to the active site region. The R122D mutation contributes to the stability of the open conformation, but is not essential for thumb dynamics, i.e., the wild type enzyme can also adapt to the open conformation.
Resumo:
Since the beginning of the HIV epidemic, there has been a significant increase in the number of histoplasmosis cases in Ceara, a state in north-east Brazil. The lack of epidemiological data on the genotypes circulating in the north-east region shows the importance of more detailed studies on the molecular epidemiology of Histoplasma capsulatum var. capsulatum in this region. Different molecular techniques have been used to better characterize the genetic profile of H. capsulatum var. capsulatum strains. The aim of this study was to analyse the genetic diversity of H. capsulatum var. capsulatum isolates in Fortaleza, the capital of Ceara, through the sequencing of the internal transcribed spacer (ITS)1-5.8S-ITS2 region, and establish the molecular profile of these isolates, along with strains from south-east Brazil, by RAPD analysis, featuring the different clusters in those regions. The isolates were grouped into two clusters. Cluster 1 included strains from the south-east and north-east regions with separation of isolates into three distinct subgroups (subgroups 1a, 1 b and 1 c). Cluster 2 included only samples from north-east Brazil. Sequencing of the ITS1 -5.8S-ITS2 region allowed the detection of two major clades, which showed geographical correlation between them and their subgroups. Therefore, it can be concluded that the H. capsulatum var. capsulatum isolates from Ceara have a high degree of genetic polymorphism. The molecular data also confirm that populations of this fungus are composed of different genotypes in Brazil and worldwide.
Resumo:
Abstract Background Bacillus sp. H2O-1, isolated from the connate water of a Brazilian reservoir, produces an antimicrobial substance (denoted as AMS H2O-1) that is active against sulfate reducing bacteria, which are the major bacterial group responsible for biogenic souring and biocorrosion in petroleum reservoirs. Thus, the use of AMS H2O-1 for sulfate reducing bacteria control in the petroleum industry is a promising alternative to chemical biocides. However, prior to the large-scale production of AMS H2O-1 for industrial applications, its chemical structure must be elucidated. This study also analyzed the changes in the wetting properties of different surfaces conditioned with AMS H2O-1 and demonstrated the effect of AMS H2O-1 on sulfate reducing bacteria cells. Results A lipopeptide mixture from AMS H2O-1 was partially purified on a silica gel column and identified via mass spectrometry (ESI-MS). It comprises four major components that range in size from 1007 to 1049 Da. The lipid moiety contains linear and branched β-hydroxy fatty acids that range in length from C13 to C16. The peptide moiety contains seven amino acids identified as Glu-Leu-Leu-Val-Asp-Leu-Leu. Transmission electron microscopy revealed cell membrane alteration of sulfate reducing bacteria after AMS H2O-1 treatment at the minimum inhibitory concentration (5 μg/ml). Cytoplasmic electron dense inclusions were observed in treated cells but not in untreated cells. AMS H2O-1 enhanced the osmosis of sulfate reducing bacteria cells and caused the leakage of the intracellular contents. In addition, contact angle measurements indicated that different surfaces conditioned by AMS H2O-1 were less hydrophobic and more electron-donor than untreated surfaces. Conclusion AMS H2O-1 is a mixture of four surfactin-like homologues, and its biocidal activity and surfactant properties suggest that this compound may be a good candidate for sulfate reducing bacteria control. Thus, it is a potential alternative to the chemical biocides or surface coating agents currently used to prevent SRB growth in petroleum industries.
Resumo:
Hancornia speciosa Gomes is a fruit tree native from Brazil that belongs to Apocinaceae family, and is popularly known as Mangabeira. Its fruits are widely consumed raw or processed as fruit jam, juices and ice creams, which have made it a target of intense exploitation. The extractive activities and intense human activity on the environment of natural occurrence of H. speciosa has caused genetic erosion in the species and little is known about the ecology or genetic structure of natural populations. The objective of this research was the evaluation of the genetic diversity and genetic structure of H. speciosa var. speciosa. The genetic variability was assessed using 11 allozyme loci with a sample of 164 individuals distributed in six natural populations located in the States of Pernambuco and Alagoas, Northeastern Brazil. The results showed a high level of genetic diversity within the species (e= 0.36) seeing that the most of the genetic variability of H. speciosa var. speciosa is within its natural populations with low difference among populations ( or = 0.081). The inbreeding values within ( = -0.555) and among populations ( =-0.428) were low showing lacking of endogamy and a surplus of heterozygotes. The estimated gene flow ( m ) was high, ranging from 2.20 to 13.18, indicating to be enough to prevent the effects of genetic drift and genetic differentiation among populations. The multivariate analyses indicated that there is a relationship between genetic and geographical distances, which was confirmed by a spatial pattern analysis using Mantel test (r = 0.3598; p = 0.0920) with 1000 random permutations. The high genetic diversity index in these populations indicates potential for in situ genetic conservation.
Resumo:
O fungo Colletotrichum gossypii var. cephalosporioides, agente causal da ramulose do algodoeiro, é transmitido pela semente que se constitui em uma das mais importantes fontes de inóculo inicial e de introdução da doença em áreas indenes. Para que se possa identificar sua presença em lotes de sementes, é importante que se empreguem métodos de detecção rápidos e seguros. O mais empregado é o do papel de filtro, que se baseia na avaliação de sinais do patógeno desenvolvidos sobre as sementes, seguida da sua identificação morfológica. O método apresenta a desvantagem do crescimento das plântulas no período de incubação das sementes que pode favorecer o desenvolvimento de outros fungos e prejudicar a caracterização do patógeno. Para minimizar este problema vem sendo empregada a técnica da restrição hídrica. O presente trabalho teve como objetivo avaliar o efeito de três solutos em dois potenciais osmóticos, comparados ao tratamento padrão de água destilada, ao congelamento e ao 2,4 D, sobre a germinação, comprimento da radícula e detecção do agente causal da ramulose, durante o teste de sanidade. Os solutos Manitol e NaCl foram mais eficientes em inibir a germinação e favorecer a incidência do patógeno no potencial osmótico de -0,8 MPa. O KCl mostrou-se eficiente em inibir a germinação nos dois potenciais osmóticos testados, -0,6 e -0,8 MPa, porém reduziu a incidência do patógeno no potencial de -0,8 MPa. Os solutos Manitol, nos potenciais osmóticos de -0,8 e -0,6 MPa e o NaCl no potencial osmótico de -0,8 foram eficientes em reduzir o comprimento da radícula, sem interferir negativamente nos níveis de detecção de C. gossypii var. cephalosporioides, podendo ser recomendados para uso em análises sanitárias de rotina.