17 resultados para BONE MARROW
Resumo:
A common subject in bone tissue engineering is the need for porous scaffolds to support cell and tissue interactions aiming at repairing bone tissue. As poly(lactide-co-glycolide)calcium phosphate (PLGACaP) scaffolds can be manufactured with different pore sizes, the aim of this study was to evaluate the effect of pore diameter on osteoblastic cell responses and bone tissue formation. Scaffolds were prepared with 85% porosity, with pore diameters in the ranges 470590, 590850 and 8501200 mu m. Rat bone marrow stem cells differentiated into osteoblasts were cultured on the scaffolds for up to 10 days to evaluate cell growth, alkaline phosphatase (ALP) activity and the gene expression of the osteoblast markers RUNX2, OSX, COL, MSX2, ALP, OC and BSP by real-time PCR. Scaffolds were implanted in critical size rat calvarial defects for 2, 4, and 8 weeks for histomorphometric analysis. Cell growth and ALP activity were not affected by the pore size; however, there was an increase in the gene expression of osteoblastic markers with the increase in the pore sizes. At 2 weeks all scaffolds displayed a similar amount of bone and blood vessels formation. At 4 and 8 weeks much more bone formation and an increased number of blood vessels were observed in scaffolds with pores of 470590 mu m. These results show that PLGACaP is a promising biomaterial for bone engineering. However, ideally, combinations of larger (similar to 1000 mu m) and smaller (similar to 500 mu m) pores in a single scaffold would optimize cellular and tissue responses during bone healing. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
Second generation antipsychotics (SGAs) have been linked to metabolic and bone disorders in clinical studies, but the mechanisms of these side effects remain unclear. Additionally, no studies have examined whether SGAs cause bone loss in mice. Using in vivo and in vitro modeling we examined the effects of risperidone, the most commonly prescribed SGA, on bone in C57BL6/J (B6) mice. Mice were treated with risperidone orally by food supplementation at a dose of 1.25 mg/kg daily for 5 and 8 weeks, starting at 3.5 weeks of age. Risperidone reduced trabecular BV/TV, trabecular number and percent cortical area. Trabecular histomorphometry demonstrated increased resorption parameters, with no change in osteoblast number or function. Risperidone also altered adipose tissue distribution such that white adipose tissue mass was reduced and liver had significantly higher lipid infiltration. Next, in order to tightly control risperidone exposure, we administered risperidone by chronic subcutaneous infusion with osmotic minipumps (0.5 mg/kg daily for 4 weeks) in 7 week old female B6 mice. Similar trabecular and cortical bone differences were observed compared to the orally treated groups (reduced trabecular BV/TV, and connectivity density, and reduced percent cortical area) with no change in body mass, percent body fat, glucose tolerance or insulin sensitivity. Unlike in orally treated mice, risperidone infusion reduced bone formation parameters (serum P1NP, MAR and BFR/BV). Resorption parameters were elevated, but this increase did not reach statistical significance. To determine if risperidone could directly affect bone cells, primary bone marrow cells were cultured with osteoclast or osteoblast differentiation media. Risperidone was added to culture medium in clinically relevant doses of 0, 2.5 or 25 ng/ml. The number of osteoclasts was significantly increased by addition in vitro of risperidone while osteoblast differentiation was not altered. These studies indicate that risperidone treatment can have negative skeletal consequences by direct activation of osteoclast activity and by indirect non-cell autonomous mechanisms. Our findings further support the tenet that the negative side effects of SGAs on bone mass should be considered when weighing potential risks and benefits, especially in children and adolescents who have not yet reached peak bone mass. This article is part of a Special Issue entitled: Interactions Between Bone, Adipose Tissue and Metabolism. (C) 2011 Elsevier Inc. All rights reserved.