18 resultados para Associative Classifier
Resumo:
Background and Aim: The identification of gastric carcinomas (GC) has traditionally been based on histomorphology. Recently, DNA microarrays have successfully been used to identify tumors through clustering of the expression profiles. Random forest clustering is widely used for tissue microarrays and other immunohistochemical data, because it handles highly-skewed tumor marker expressions well, and weighs the contribution of each marker according to its relatedness with other tumor markers. In the present study, we e identified biologically- and clinically-meaningful groups of GC by hierarchical clustering analysis of immunohistochemical protein expression. Methods: We selected 28 proteins (p16, p27, p21, cyclin D1, cyclin A, cyclin B1, pRb, p53, c-met, c-erbB-2, vascular endothelial growth factor, transforming growth factor [TGF]-beta I, TGF-beta II, MutS homolog-2, bcl-2, bax, bak, bcl-x, adenomatous polyposis coli, clathrin, E-cadherin, beta-catenin, mucin (MUC) 1, MUC2, MUC5AC, MUC6, matrix metalloproteinase [ MMP]-2, and MMP-9) to be investigated by immunohistochemistry in 482 GC. The analyses of the data were done using a random forest-clustering method. Results: Proteins related to cell cycle, growth factor, cell motility, cell adhesion, apoptosis, and matrix remodeling were highly expressed in GC. We identified protein expressions associated with poor survival in diffuse-type GC. Conclusions: Based on the expression analysis of 28 proteins, we identified two groups of GC that could not be explained by any clinicopathological variables, and a subgroup of long-surviving diffuse-type GC patients with a distinct molecular profile. These results provide not only a new molecular basis for understanding the biological properties of GC, but also better prediction of survival than the classic pathological grouping.
Resumo:
Several recent studies in literature have identified brain morphological alterations associated to Borderline Personality Disorder (BPD) patients. These findings are reported by studies based on voxel-based-morphometry analysis of structural MRI data, comparing mean gray-matter concentration between groups of BPD patients and healthy controls. On the other hand, mean differences between groups are not informative about the discriminative value of neuroimaging data to predict the group of individual subjects. In this paper, we go beyond mean differences analyses, and explore to what extent individual BPD patients can be differentiated from controls (25 subjects in each group), using a combination of automated-morphometric tools for regional cortical thickness/volumetric estimation and Support Vector Machine classifier. The approach included a feature selection step in order to identify the regions containing most discriminative information. The accuracy of this classifier was evaluated using the leave-one-subject-out procedure. The brain regions indicated as containing relevant information to discriminate groups were the orbitofrontal, rostral anterior cingulate, posterior cingulate, middle temporal cortices, among others. These areas, which are distinctively involved in emotional and affect regulation of BPD patients, were the most informative regions to achieve both sensitivity and specificity values of 80% in SVM classification. The findings suggest that this new methodology can add clinical and potential diagnostic value to neuroimaging of psychiatric disorders. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The striatum, the largest component of the basal ganglia, is usually subdivided into associative, motor and limbic components. However, the electrophysiological interactions between these three subsystems during behavior remain largely unknown. We hypothesized that the striatum might be particularly active during exploratory behavior, which is presumably associated with increased attention. We investigated the modulation of local field potentials (LFPs) in the striatum during attentive wakefulness in freely moving rats. To this end, we implanted microelectrodes into different parts of the striatum of Wistar rats, as well as into the motor, associative and limbic cortices. We then used electromyograms to identify motor activity and analyzed the instantaneous frequency, power spectra and partial directed coherence during exploratory behavior. We observed fine modulation in the theta frequency range of striatal LFPs in 92.5 ± 2.5% of all epochs of exploratory behavior. Concomitantly, the theta power spectrum increased in all striatal channels (P < 0.001), and coherence analysis revealed strong connectivity (coefficients >0.7) between the primary motor cortex and the rostral part of the caudatoputamen nucleus, as well as among all striatal channels (P < 0.001). Conclusively, we observed a pattern of strong theta band activation in the entire striatum during attentive wakefulness, as well as a strong coherence between the motor cortex and the entire striatum. We suggest that this activation reflects the integration of motor, cognitive and limbic systems during attentive wakefulness.