37 resultados para Artificial intelligence -- Computer programs
Resumo:
Even though the digital processing of documents is increasingly widespread in industry, printed documents are still largely in use. In order to process electronically the contents of printed documents, information must be extracted from digital images of documents. When dealing with complex documents, in which the contents of different regions and fields can be highly heterogeneous with respect to layout, printing quality and the utilization of fonts and typing standards, the reconstruction of the contents of documents from digital images can be a difficult problem. In the present article we present an efficient solution for this problem, in which the semantic contents of fields in a complex document are extracted from a digital image.
Resumo:
There are some variants of the widely used Fuzzy C-Means (FCM) algorithm that support clustering data distributed across different sites. Those methods have been studied under different names, like collaborative and parallel fuzzy clustering. In this study, we offer some augmentation of the two FCM-based clustering algorithms used to cluster distributed data by arriving at some constructive ways of determining essential parameters of the algorithms (including the number of clusters) and forming a set of systematically structured guidelines such as a selection of the specific algorithm depending on the nature of the data environment and the assumptions being made about the number of clusters. A thorough complexity analysis, including space, time, and communication aspects, is reported. A series of detailed numeric experiments is used to illustrate the main ideas discussed in the study.
Resumo:
This paper presents an optimum user-steered boundary tracking approach for image segmentation, which simulates the behavior of water flowing through a riverbed. The riverbed approach was devised using the image foresting transform with a never-exploited connectivity function. We analyze its properties in the derived image graphs and discuss its theoretical relation with other popular methods such as live wire and graph cuts. Several experiments show that riverbed can significantly reduce the number of user interactions (anchor points), as compared to live wire for objects with complex shapes. This paper also includes a discussion about how to combine different methods in order to take advantage of their complementary strengths.
Resumo:
The attributes describing a data set may often be arranged in meaningful subsets, each of which corresponds to a different aspect of the data. An unsupervised algorithm (SCAD) that simultaneously performs fuzzy clustering and aspects weighting was proposed in the literature. However, SCAD may fail and halt given certain conditions. To fix this problem, its steps are modified and then reordered to reduce the number of parameters required to be set by the user. In this paper we prove that each step of the resulting algorithm, named ASCAD, globally minimizes its cost-function with respect to the argument being optimized. The asymptotic analysis of ASCAD leads to a time complexity which is the same as that of fuzzy c-means. A hard version of the algorithm and a novel validity criterion that considers aspect weights in order to estimate the number of clusters are also described. The proposed method is assessed over several artificial and real data sets.
Resumo:
Cognitive dissonance is the stress that comes from holding two conflicting thoughts simultaneously in the mind, usually arising when people are asked to choose between two detrimental or two beneficial options. In view of the well-established role of emotions in decision making, here we investigate whether the conventional structural models used to represent the relationships among basic emotions, such as the Circumplex model of affect, can describe the emotions of cognitive dissonance as well. We presented a questionnaire to 34 anonymous participants, where each question described a decision to be made among two conflicting motivations and asked the participants to rate analogically the pleasantness and the intensity of the experienced emotion. We found that the results were compatible with the predictions of the Circumplex model for basic emotions. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Semi-supervised learning techniques have gained increasing attention in the machine learning community, as a result of two main factors: (1) the available data is exponentially increasing; (2) the task of data labeling is cumbersome and expensive, involving human experts in the process. In this paper, we propose a network-based semi-supervised learning method inspired by the modularity greedy algorithm, which was originally applied for unsupervised learning. Changes have been made in the process of modularity maximization in a way to adapt the model to propagate labels throughout the network. Furthermore, a network reduction technique is introduced, as well as an extensive analysis of its impact on the network. Computer simulations are performed for artificial and real-world databases, providing a numerical quantitative basis for the performance of the proposed method.
Resumo:
This paper addressed the problem of water-demand forecasting for real-time operation of water supply systems. The present study was conducted to identify the best fit model using hourly consumption data from the water supply system of Araraquara, Sa approximate to o Paulo, Brazil. Artificial neural networks (ANNs) were used in view of their enhanced capability to match or even improve on the regression model forecasts. The ANNs used were the multilayer perceptron with the back-propagation algorithm (MLP-BP), the dynamic neural network (DAN2), and two hybrid ANNs. The hybrid models used the error produced by the Fourier series forecasting as input to the MLP-BP and DAN2, called ANN-H and DAN2-H, respectively. The tested inputs for the neural network were selected literature and correlation analysis. The results from the hybrid models were promising, DAN2 performing better than the tested MLP-BP models. DAN2-H, identified as the best model, produced a mean absolute error (MAE) of 3.3 L/s and 2.8 L/s for training and test set, respectively, for the prediction of the next hour, which represented about 12% of the average consumption. The best forecasting model for the next 24 hours was again DAN2-H, which outperformed other compared models, and produced a MAE of 3.1 L/s and 3.0 L/s for training and test set respectively, which represented about 12% of average consumption. DOI: 10.1061/(ASCE)WR.1943-5452.0000177. (C) 2012 American Society of Civil Engineers.
Resumo:
Inspection for corrosion of gas storage spheres at the welding seam lines must be done periodically. Until now this inspection is being done manually and has a high cost associated to it and a high risk of inspection personel injuries. The Brazilian Petroleum Company, Petrobras, is seeking cost reduction and personel safety by the use of autonomous robot technology. This paper presents the development of a robot capable of autonomously follow a welding line and transporting corrosion measurement sensors. The robot uses a pair of sensors each composed of a laser source and a video camera that allows the estimation of the center of the welding line. The mechanical robot uses four magnetic wheels to adhere to the sphere's surface and was constructed in a way that always three wheels are in contact with the sphere's metallic surface which guarantees enough magnetic atraction to hold the robot in the sphere's surface all the time. Additionally, an independently actuated table for attaching the corrosion inspection sensors was included for small position corrections. Tests were conducted at the laboratory and in a real sphere showing the validity of the proposed approach and implementation.
Resumo:
A semi-autonomous unmanned underwater vehicle (UUV), named LAURS, is being developed at the Laboratory of Sensors and Actuators at the University of Sao Paulo. The vehicle has been designed to provide inspection and intervention capabilities in specific missions of deep water oil fields. In this work, a method of modeling and identification of yaw motion dynamic system model of an open-frame underwater vehicle is presented. Using an on-board low cost magnetic compass sensor the method is based on the utilization of an uncoupled 1-DOF (degree of freedom) dynamic system equation and the application of the integral method which is the classical least squares algorithm applied to the integral form of the dynamic system equations. Experimental trials with the actual vehicle have been performed in a test tank and diving pool. During these experiments, thrusters responsible for yaw motion are driven by sinusoidal voltage signal profiles. An assessment of the feasibility of the method reveals that estimated dynamic system models are more reliable when considering slow and small sinusoidal voltage signal profiles, i.e. with larger periods and with relatively small amplitude and offset.
Resumo:
Shared attention is a type of communication very important among human beings. It is sometimes reserved for the more complex form of communication being constituted by a sequence of four steps: mutual gaze, gaze following, imperative pointing and declarative pointing. Some approaches have been proposed in Human-Robot Interaction area to solve part of shared attention process, that is, the most of works proposed try to solve the first two steps. Models based on temporal difference, neural networks, probabilistic and reinforcement learning are methods used in several works. In this article, we are presenting a robotic architecture that provides a robot or agent, the capacity of learning mutual gaze, gaze following and declarative pointing using a robotic head interacting with a caregiver. Three learning methods have been incorporated to this architecture and a comparison of their performance has been done to find the most adequate to be used in real experiment. The learning capabilities of this architecture have been analyzed by observing the robot interacting with the human in a controlled environment. The experimental results show that the robotic head is able to produce appropriate behavior and to learn from sociable interaction.
Resumo:
Support Vector Machines (SVMs) have achieved very good performance on different learning problems. However, the success of SVMs depends on the adequate choice of the values of a number of parameters (e.g., the kernel and regularization parameters). In the current work, we propose the combination of meta-learning and search algorithms to deal with the problem of SVM parameter selection. In this combination, given a new problem to be solved, meta-learning is employed to recommend SVM parameter values based on parameter configurations that have been successfully adopted in previous similar problems. The parameter values returned by meta-learning are then used as initial search points by a search technique, which will further explore the parameter space. In this proposal, we envisioned that the initial solutions provided by meta-learning are located in good regions of the search space (i.e. they are closer to optimum solutions). Hence, the search algorithm would need to evaluate a lower number of candidate solutions when looking for an adequate solution. In this work, we investigate the combination of meta-learning with two search algorithms: Particle Swarm Optimization and Tabu Search. The implemented hybrid algorithms were used to select the values of two SVM parameters in the regression domain. These combinations were compared with the use of the search algorithms without meta-learning. The experimental results on a set of 40 regression problems showed that, on average, the proposed hybrid methods obtained lower error rates when compared to their components applied in isolation.
Resumo:
In this article we propose an efficient and accurate method for fault location in underground distribution systems by means of an Optimum-Path Forest (OPF) classifier. We applied the time domains reflectometry method for signal acquisition, which was further analyzed by OPF and several other well-known pattern recognition techniques. The results indicated that OPF and support vector machines outperformed artificial neural networks and a Bayesian classifier, but OPF was much more efficient than all classifiers for training, and the second fastest for classification.
Resumo:
This paper addresses the m-machine no-wait flow shop problem where the set-up time of a job is separated from its processing time. The performance measure considered is the total flowtime. A new hybrid metaheuristic Genetic Algorithm-Cluster Search is proposed to solve the scheduling problem. The performance of the proposed method is evaluated and the results are compared with the best method reported in the literature. Experimental tests show superiority of the new method for the test problems set, regarding the solution quality. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
It has been revealed that the network of excitable neurons via attractive coupling can generate spikes under stimuli of subthreshold signals with disordered phases. In this paper, we explore the firing activity induced by phase disorder in excitable neuronal networks consisting of both attractive and repulsive coupling. By increasing the fraction of repulsive coupling, we find that, in the weak coupling strength case, the firing threshold of phase disorder is increased and the system response to subthreshold signals is decreased, indicating that the effect of inducing neuron firing by phase disorder is weakened with repulsive coupling. Interestingly, in the large coupling strength case, we see an opposite situation, where the coupled neurons show a rather large response to the subthreshold signals even with small phase disorder. The latter case implies that the effect of phase disorder is enhanced by repulsive coupling. A system of two-coupled excitable neurons is used to explain the role of repulsive coupling on phase-disorder-induced firing activity.
Resumo:
In this work, we study the performance evaluation of resource-aware business process models. We define a new framework that allows the generation of analytical models for performance evaluation from business process models annotated with resource management information. This framework is composed of a new notation that allows the specification of resource management constraints and a method to convert a business process specification and its resource constraints into Stochastic Automata Networks (SANs). We show that the analysis of the generated SAN model provides several performance indices, such as average throughput of the system, average waiting time, average queues size, and utilization rate of resources. Using the BP2SAN tool - our implementation of the proposed framework - and a SAN solver (such as the PEPS tool) we show through a simple use-case how a business specialist with no skills in stochastic modeling can easily obtain performance indices that, in turn, can help to identify bottlenecks on the model, to perform workload characterization, to define the provisioning of resources, and to study other performance related aspects of the business process.