19 resultados para Ariosto, Lodovico, 1474-1533.
Resumo:
The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at root s = 7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L-int = 5.6 nb(-1). The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p(t) > 1,3 GeV/c and rapidity vertical bar y vertical bar < 0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the psi(2S) and chi(c) resonances, is sigma(prompt J/psi) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 8.3 +/- 0.8(stat.) +/- 1.1 (syst.)(-1.4)(+1.5) (syst. pol.) mu b. The cross section for the production of b-hadrons decaying to J/psi with p(t) > 1.3 GeV/c and vertical bar y vertical bar < 0.9 is a sigma(J/psi <- hB) (p(t) > 1.3 GeV/c, vertical bar y vertical bar < 0.9) = 1.46 +/- 0.38 (stat.)(-0.32)(+0.26) (syst.) mu b. The results are compared to QCD model predictions. The shape of the p(t) and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b (b) over bar pair total cross section and d sigma/dy at mid-rapidity.
Resumo:
One of the overall goals of industries is to use packages that do not cause environmental problems at disposal time, but that have the same properties as the conventional ones. The goal of this study is to synthesize edible films based on hydroxypropyl methylcellulose (HPMC) with guava puree and chitosan (CS) nanoparticles. This was divided into two stages, the first is the synthesis of chitosan nanoparticles and the second is the production of the films. For the nanoparticles, average size and zeta potential measurements were performed. The characterizations of mechanical and thermal properties, solubility and water vapor permeability tests were conducted in the films. It was observed that when the nanoparticles were added to HPMC and guava puree films, they improved their mechanical and thermal properties, as well as decreased the films solubility and permeability. The potential application of the films prepared would be in edible films with flavor and odor to extend the shelf life of products.
Resumo:
Background In ROCKET AF, rivaroxaban was non-inferior to adjusted-dose warfarin in preventing stroke or systemic embolism among patients with atrial fibrillation (AF). We aimed to investigate whether the efficacy and safety of rivaroxaban compared with warfarin is consistent among the subgroups of patients with and without previous stroke or transient ischaemic attack (TIA). Methods In ROCKET AF, patients with AF who were at increased risk of stroke were randomly assigned (1:1) in a double-blind manner to rivaroxaban 20 mg daily or adjusted dose warfarin (international normalised ratio 2-0-3.0). Patients and investigators were masked to treatment allocation. Between Dec 18,2006, and June 17,2009,14 264 patients from 1178 centres in 45 countries were randomly assigned. The primary endpoint was the composite of stroke or non-CNS systemic embolism. In this substudy we assessed the interaction of the treatment effects of rivaroxaban and warfarin among patients with and without previous stroke or TIA. Efficacy analyses were by intention to treat and safety analyses were done in the on-treatment population. ROCKET AF is registered with ClinicalTrials.gov, number NCT00403767. Findings 7468 (52%) patients had a previous stroke (n=4907) or TIA (n=2561) and 6796 (48%) had no previous stroke or TIA. The number of events per 100 person-years for the primary endpoint in patients treated with rivaroxaban compared with warfarin was consistent among patients with previous stroke or TIA (2.79% rivaroxaban vs 2.96% warfarin; hazard ratio [HR] 0-94,95% CI 0.77-1.16) and those without (1.44% vs 1.88%; 0.77, 0.58-1-01; interaction p=0.23). The number of major and non-major clinically relevant bleeding events per 100 person-years in patients treated with rivaroxaban compared with warfarin was consistent among patients with previous stroke or TIA (13.31% rivaroxaban vs 13.87% warfarin; HR 0.96,95% CI 0.87-1-07) and those without (16.69% vs 15.19%; 1.10, 0.99-1.21; interaction p=0.08). Interpretation There was no evidence that the relative efficacy and safety of rivaroxaban compared with warfarin was different between patients who had a previous stroke or TIA and those who had no previous stroke or TIA. These results support the use of rivaroxaban as an alternative to warfarin for prevention of recurrent as well as initial stroke in patients with AF.
Resumo:
Nanocomposite fibers based on multi-walled carbon nanotubes (MWCNT) and poly(lactic acid) (PLA) were prepared by solution blow spinning (SBS). Fiber morphology was characterized by scanning electron microscopy (SEM) and optical microscopy (OM). Electrical, thermal, surface and crystalline properties of the spun fibers were evaluated, respectively, by conductivity measurements (4-point probe), thermogravimetric analyses (TGA), differential scanning calorimetry (DSC), contact angle and X-ray diffraction (XRD). OM analysis of the spun mats showed a poor dispersion of MWCNT in the matrix, however dispersion in solution was increased during spinning where droplets of PLA in solution loaded with MWCNT were pulled by the pressure drop at the nozzle, producing PLA fibers filled with MWCNT. Good electrical conductivity and hydrophobicity can be achieved at low carbon nanotube contents. When only 1 wt% MWCNT was added to low-crystalline PLA, surface conductivity of the composites increased from 5 x 10(-8) to 0.46 S/cm. Addition of MWCNT can slightly influence the degree of crystallinity of PLA fibers as studied by XRD and DSC. Thermogravimetric analyses showed that MWCNT loading can decrease the onset degradation temperature of the composites which was attributed to the catalytic effect of metallic residues in MWCNT. Moreover, it was demonstrated that hydrophilicity slightly increased with an increase in MWCNT content. These results show that solution blow spinning can also be used to produce nanocomposite fibers with many potential applications such as in sensors and biosensors.